ﻻ يوجد ملخص باللغة العربية
In this paper, we analyze the quantum criticality of the Rabi-Stark model at finite ratios of the qubit and cavity frequencies in terms of the energy gap, the order parameter, as well as the fidelity, if the Stark coupling strength is the same as the cavity frequency. The critical exponents are derived analytically. The energy gap and the length critical exponents are different from those in the quantum Rabi model and the Dicke model. The finite size scaling analysis for the order parameter and the fidelity susceptibility is also performed. The universal scaling behaviors are demonstrated and several finite size exponents can be then extracted. Furthermore, universal critical behavior can be also established in terms of the bosonic Hilbert space truncation number, and the corresponding critical scaling exponents are found. Interestingly, the critical correlation length exponents in terms of the photonic truncation number as well as the equivalently effective length scales are different in the Rabi-Stark model and the quantum Rabi model, suggesting they belong to different universality classes. The second-order quantum phase transition is convincingly corroborated in the Rabi-Stark model at finite frequency ratios, by contrast, it only emerges at the infinite frequency ratio in the original quantum Rabi model without the Stark coupling.
We study the dynamic sensitivity of the quantum Rabi model, which exhibits quantum criticality in the finite-component-system case. This dynamic sensitivity can be detected by introducing an auxiliary two-level atom far-off-resonantly coupled to the
Promising applications of the anisotropic quantum Rabi model (AQRM) in broad parameter ranges are explored, which is realized with superconducting flux qubits simultaneously driven by two-tone time-dependent magnetic fields. Regarding the quantum pha
Various quantum phase transitions in the anisotropic Rabi-Stark model with both the nonlinear Stark coupling and the linear dipole coupling between a two-level system and a single-mode cavity are studied in this work. The first-order quantum phase tr
We present a frequency-renormalized multipolaron expansion method to explore the ground state of quantum Rabi model (QRM). The main idea is to take polaron as starting point to expand the ground state of QRM. The polarons are deformed and displaced o
To use quantum systems for technological applications we first need to preserve their coherence for macroscopic timescales, even at finite temperature. Quantum error correction has made it possible to actively correct errors that affect a quantum mem