ترغب بنشر مسار تعليمي؟ اضغط هنا

Photometric characterization of multiple populations in star clusters: The impact of the first dredge-up

59   0   0.0 ( 0 )
 نشر من قبل Maurizio Salaris Prof.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The existence of star-to-star light-element abundance variations (multiple populations, MPs) in massive Galactic and extragalactic star clusters older than about 2 Gyr is by now well established. Photometry of red giant branch (RGB) stars has been and still is instrumental in enabling the detection and characterization of cluster MPs, through the appropriate choices of filters, colours and colour combinations, that are mainly sensitive to N and --to a lesser degree-- C stellar surface abundances. An important issue not yet properly addressed is that the translation of the observed widths of the cluster RGBs to abundance spreads must account for the effect of the first dredge-up on the surface chemical patterns, hence on the spectral energy distributions of stars belonging to the various MPs. We have filled this gap by studying theoretically the impact of the dredge-up on the predicted widths of RGBs in clusters hosting MPs. We find that for a given initial range of N abundances, the first dredge up reduces the predicted RGB widths in N-sensitive filters compared to the case when its effect on the stellar spectral energy distributions is not accounted for. This reduction is a strong function of age and has also a dependence on metallicity. The net effect is an underestimate of the initial N-abundance ranges from RGB photometry if the first dredge-up is not accounted for in the modelling, and also the potential determination of spurious trends of N-abundance spreads with age.



قيم البحث

اقرأ أيضاً

102 - Mark Gieles 2019
Globular clusters (GCs) display anomalous light element abundances (HeCNONaMgAl), resembling the yields of hot-hydrogen burning, but there is no consensus yet on the origin of these ubiquitous multiple populations. We present a model in which a super -massive star (SMS, >10^3 Msun) forms via stellar collisions during GC formation and pollutes the intra-cluster medium. The growth of the SMS finds a balance with the wind mass loss rate, such that the SMS can produce a significant fraction of the total GC mass in processed material, thereby overcoming the so-called mass-budget problem that plagues other models. Because of continuous rejuvenation, the SMS acts as a `conveyer-belt of hot-hydrogen burning yields with (relatively) low He abundances, in agreement with empirical constraints. Additionally, the amount of processed material per unit of GC mass correlates with GC mass, addressing the specific mass budget problem. We discuss uncertainties and tests of this new self-enrichment scenario.
It is now well established that globular clusters (GCs) exhibit star-to-star light-element abundance variations (known as multiple stellar populations, MPs). Such chemical anomalies have been found in (nearly) all the ancient GCs (more than 10 Gyr ol d) of our Galaxy and its close companions, but so far no model for the origin of MPs is able to reproduce all the relevant observations. To gain new insights into this phenomenon, we have undertaken a photometric Hubble Space Telescope survey to study clusters with masses comparable to that of old GCs, where MPs have been identified, but with significantly younger ages. Nine clusters in the Magellanic Clouds with ages between $sim$ 1.5-11 Gyr have been targeted in this survey. We confirm the presence of multiple populations in all clusters older than 6 Gyr and we add NGC 1978 to the group of clusters for which MPs have been identified. With an age of $sim$ 2 Gyr, NGC 1978 is the youngest cluster known to host chemical abundance spreads found to date. We do not detect evident star-to-star variations for slightly younger massive clusters ($sim$ 1.7 Gyr), thus pointing towards an unexpected age dependence for the onset of multiple populations. This discovery suggests that the formation of MPs is not restricted to the early Universe and that GCs and young massive clusters share common formation and evolutionary processes.
Since the discovery of chemically peculiar stars in globular clusters in the last century, the study of multiple populations has become increasingly important, given that chemical inhomogeneity is found in almost all globular clusters. Despite variou s proposed theories attempting to explain this phenomenon, fitting all the observational evidence in globular clusters with one single theory remains notoriously difficult and currently unsuccessful. In order to improve existing models and motivate new ones, we are observing globular clusters at critical conditions, e.g., metal-rich end, metal-poor end, and low mass end. In this paper, we present our first attempt to investigate multiple populations in low mass globular clusters. We obtained low-resolution spectra around 4000 A of 30 members of the globular cluster Palomar 13 using OSIRIS/Multi-object spectrograph mounted at the Gran Telescopio Canarias. The membership of red giant branch stars is confirmed by the latest proper motions from Gaia DR2 and literature velocities. After comparing the measured CN and CH spectral indices with those of the stellar models, we found a clear sign of nitrogen variation among the red giant branch stars. Palomar 13 may be the lowest mass globular cluster showing multiple populations.
We investigate the multiple stellar populations of the globular clusters M3, M5, M13, and M71 using $g^prime$ and intermediate-band CN-$lambda 3883$ photometry obtained with the WIYN 0.9-m telescope on Kitt Peak. We find a strong correlation between red giant stars CN$-g^prime$ colors and their spectroscopic sodium abundances, thus demonstrating the efficacy of the two-filter system for stellar population studies. In all four clusters, the observed spread in red giant branch CN$-g^prime$ colors is wider than that expected from photometric uncertainty, confirming the well-known chemical inhomogeneity of these systems. M3 and M13 show clear evidence for a radial dependence in the CN-band strengths of its red giants, while the evidence for such a radial dependence of CN strengths in M5 is ambiguous. Our data suggest that the dynamically old, relatively metal-rich M71 system is well mixed, as it shows no evidence for chemical segregation. Finally, we measure the radial gradients in the integrated CN$-g^prime$ color of the clusters and find that such gradients are easily detectable in the integrated light. We suggest that photometric observations of color gradients within globular clusters throughout the Local Group can be used to characterize their multiple populations, and thereby constrain the formation history of globular clusters in different galactic environments.
132 - Ariane Lanc{c}on 2010
The evolution of AGB stars is notoriously complex. The confrontation of AGB population models with observed stellar populations is a useful alternative to the detailed study of individual stars in efforts to converge towards a reliable evolution theo ry. I review here the impact of studies of star clusters on AGB models and AGB population synthesis, deliberately leaving out any more complex stellar populations. Over the last 10 years, despite much effort, the absolute uncertainties in the predictions of the light emitted by intermediate age populations have not been reduced to a satisfactory level. Observational sample definitions, as well as the combination of the natural variance in AGB properties with small number statistics, are largely responsible for this situation. There is hope that the constraints may soon become strong enough, thanks to large unbiased surveys of star clusters, resolved colour-magnitude diagrams, and new analysis methods that can account for the stochastic nature of AGB populations in clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا