ﻻ يوجد ملخص باللغة العربية
The existence of star-to-star light-element abundance variations (multiple populations, MPs) in massive Galactic and extragalactic star clusters older than about 2 Gyr is by now well established. Photometry of red giant branch (RGB) stars has been and still is instrumental in enabling the detection and characterization of cluster MPs, through the appropriate choices of filters, colours and colour combinations, that are mainly sensitive to N and --to a lesser degree-- C stellar surface abundances. An important issue not yet properly addressed is that the translation of the observed widths of the cluster RGBs to abundance spreads must account for the effect of the first dredge-up on the surface chemical patterns, hence on the spectral energy distributions of stars belonging to the various MPs. We have filled this gap by studying theoretically the impact of the dredge-up on the predicted widths of RGBs in clusters hosting MPs. We find that for a given initial range of N abundances, the first dredge up reduces the predicted RGB widths in N-sensitive filters compared to the case when its effect on the stellar spectral energy distributions is not accounted for. This reduction is a strong function of age and has also a dependence on metallicity. The net effect is an underestimate of the initial N-abundance ranges from RGB photometry if the first dredge-up is not accounted for in the modelling, and also the potential determination of spurious trends of N-abundance spreads with age.
Globular clusters (GCs) display anomalous light element abundances (HeCNONaMgAl), resembling the yields of hot-hydrogen burning, but there is no consensus yet on the origin of these ubiquitous multiple populations. We present a model in which a super
It is now well established that globular clusters (GCs) exhibit star-to-star light-element abundance variations (known as multiple stellar populations, MPs). Such chemical anomalies have been found in (nearly) all the ancient GCs (more than 10 Gyr ol
Since the discovery of chemically peculiar stars in globular clusters in the last century, the study of multiple populations has become increasingly important, given that chemical inhomogeneity is found in almost all globular clusters. Despite variou
We investigate the multiple stellar populations of the globular clusters M3, M5, M13, and M71 using $g^prime$ and intermediate-band CN-$lambda 3883$ photometry obtained with the WIYN 0.9-m telescope on Kitt Peak. We find a strong correlation between
The evolution of AGB stars is notoriously complex. The confrontation of AGB population models with observed stellar populations is a useful alternative to the detailed study of individual stars in efforts to converge towards a reliable evolution theo