ترغب بنشر مسار تعليمي؟ اضغط هنا

The Chemical Compositions of Accreted and {it in situ} Galactic Globular Clusters According to SDSS/APOGEE

71   0   0.0 ( 0 )
 نشر من قبل Daniel Horta Darrington
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Studies of the kinematics and chemical compositions of Galactic globular clusters (GCs) enable the reconstruction of the history of star formation, chemical evolution, and mass assembly of the Galaxy. Using the latest data release (DR16) of the SDSS/APOGEE survey, we identify 3,090 stars associated with 46 GCs. Using a previously defined kinematic association, we break the sample down into eight separate groups and examine how the kinematics-based classification maps into chemical composition space, considering only $alpha$ (mostly Si and Mg) elements and Fe. Our results show that: (i) The loci of both in situ and accreted subgroups in chemical space match those of their field counterparts; (ii) GCs from different individual accreted subgroups occupy the same locus in chemical space. This could either mean that they share a similar origin or that they are associated with distinct satellites which underwent similar chemical enrichment histories; (iii) The chemical compositions of the GCs associated with the low orbital energy subgroup defined by Massari and collaborators is broadly consistent with an in situ origin. However, at the low metallicity end, the distinction between accreted and in situ populations is blurred; (iv) Regarding the status of GCs whose origin is ambiguous, we conclude the following: the position in Si-Fe plane suggests an in situ}origin for Liller 1 and a likely accreted origin for NGC 5904 and NGC 6388. The case of NGC 288 is unclear, as its orbital properties suggest an accretion origin, its chemical composition suggests it may have formed in situ.



قيم البحث

اقرأ أيضاً

Here we examine the Milky Ways GC system to estimate the fraction of accreted versus in situ formed GCs. We first assemble a high quality database of ages and metallicities for 93 Milky Way GCs from literature deep colour-magnitude data. The age-meta llicity relation for the Milky Ways GCs reveals two distinct tracks -- one with near constant old age of ~12.8 Gyr and the other branches to younger ages. We find that the latter young track is dominated by globular clusters associated with the Sagittarius and Canis Major dwarf galaxies. Despite being overly simplistic, its age-metallicity relation can be well represented by a simple closed box model with continuous star formation. The inferred chemical enrichment history is similar to that of the Large Magellanic Cloud, but is more enriched, at a given age, compared to the Small Magellanic Cloud. After excluding Sagittarius and Canis Major GCs, several young track GCs remain. Their horizontal branch morphologies are often red and hence classified as Young Halo objects, however they do not tend to reveal extended horizontal branches (a possible signature of an accreted remnant nucleus). Retrograde orbit GCs (a key signature of accretion) are commonly found in the young track. We also examine GCs that lie close to the Fornax-Leo-Sculptor great circle defined by several satellite galaxies. We find that several GCs are consistent with the young track and we speculate that they may have been accreted along with their host dwarf galaxy, whose nucleus may survive as a GC. Finally, we suggest that 27-47 GCs (about 1/4 of the entire system), from 6-8 dwarf galaxies, were accreted to build the Milky Way GC system we seen today.
We report on Gemini/GMOS observations of two newly discovered globular clusters in the outskirts of M31. These objects, PAndAS-7 and PAndAS-8, lie at a galactocentric radius of ~87 kpc and are projected, with separation ~19 kpc, onto a field halo sub structure known as the South-West Cloud. We measure radial velocities for the two clusters which confirm that they are almost certainly physically associated with this feature. Colour-magnitude diagrams reveal strikingly short, exclusively red horizontal branches in both PA-7 and PA-8; both also have photometric [Fe/H] = -1.35 +/- 0.15. At this metallicity, the morphology of the horizontal branch is maximally sensitive to age, and we use the distinctive configurations seen in PA-7 and PA-8 to demonstrate that both objects are very likely to be at least 2 Gyr younger than the oldest Milky Way globular clusters. Our observations provide strong evidence for young globular clusters being accreted into the remote outer regions of M31 in a manner entirely consistent with the established picture for the Milky Way, and add credence to the idea that similar processes play a central role in determining the composition of globular cluster systems in large spiral galaxies in general.
The Milky Way underwent its last significant merger ten billion years ago, when the Gaia-Enceladus-Sausage (GES) was accreted. Accreted GES stars and progenitor stars born prior to the merger make up the bulk of the inner halo. Even though these two main populations of halo stars have similar $durations$ of star formation prior to their merger, they differ in [$alpha$/Fe]-[Fe/H] space, with the GES population bending to lower [$alpha$/Fe] at a relatively low value of [Fe/H]. We use cosmological simulations of a Milky Way to argue that the different tracks of the halo stars through the [$alpha$/Fe]-[Fe/H] plane are due to a difference in their star formation history and efficiency, with the lower mass GES having its low and constant star formation regulated by feedback whilst the higher mass main progenitor has a higher star formation rate prior to the merger. The lower star formation efficiency of GES leads to lower gas pollution levels, pushing [$alpha$/Fe]-[Fe/H] tracks to the left. In addition, the increasing star formation rate maintains a higher relative contribution of Type~II SNe to Type~Ia SNe for the main progenitor population that formed during the same time period, thus maintaining a relatively high [$alpha$/Fe]. Thus the different positions of the downturns in the [$alpha$/Fe]-[Fe/H] plane for the GES stars are not reflective of different star formation durations, but instead reflect different star formation efficiencies. We argue that cosmological simulations match a wide range of independent observations, breaking degeneracies that exist in simpler models.
We present new identifications of five red giant stars in the Galactic halo with chemical abundance patterns that indicate they originally formed in globular clusters. Using data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE ) Survey available through Sloan Digital Sky Survey Data Release 12 (DR12), we first identify likely halo giants, and then search those for the well-known chemical tags associated with globular clusters, specifically enrichment in nitrogen and aluminum. We find that 2% of the halo giants in our sample have this chemical signature, in agreement with previous results. Following the interpretation in our previous work on this topic, this would imply that at least 13% of halo stars originally formed in globular clusters. Recent developments in the theoretical understanding of globular cluster formation raise questions about that interpretation, and we concede the possibility that these migrants represent a small fraction of the halo field. There are roughly as many stars with the chemical tags of globular clusters in the halo field as there are in globular clusters, whether or not they are accompanied by a much larger chemically untaggable population of former globular cluster stars.
Massive early-type galaxies typically have two subpopulations of globular clusters (GCs) which often reveal radial colour (metallicity) gradients. Collating gradients from the literature, we show that the gradients in the metal-rich and metal-poor GC subpopulations are the same, within measurement uncertainties, in a given galaxy. Furthermore, these GC gradients are similar in strength to the {it stellar} metallicity gradient of the host galaxy. At the very largest radii (e.g. greater than 8 galaxy effective radii) there is some evidence that the GC gradients become flat with near constant mean metallicity. Using stellar metallicity gradients as a proxy, we probe the assembly histories of massive early-type galaxies with hydrodynamical simulations from the Magneticum suite of models. In particular, we measure the stellar metallicity gradient for the in-situ and accreted components over a similar radial range as those observed for GC subpopulations. We find that the in-situ and accreted stellar metallicity gradients are similar but have a larger scatter than the metal-rich and metal-poor GC subpopulations gradients in a given galaxy. We conclude that although metal-rich GCs are predominately formed during the in-situ phase and metal-poor GCs during the accretion phase of massive galaxy formation, they do not have a strict one-to-one connection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا