ترغب بنشر مسار تعليمي؟ اضغط هنا

Forcing statistics in resolvent analysis: application in minimal turbulent Couette flow

85   0   0.0 ( 0 )
 نشر من قبل Petr\\^onio Nogueira
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An analysis of the statistics of the non-linear terms in resolvent analysis is performed in this work for turbulent Couette flow at low Reynolds number. Data from a direct numerical simulation of a minimal flow unit, at Reynolds number 400, is post-processed using Fourier analysis in both time and space, leading to the covariance matrix of the velocity. From the same data, we computed the non-linear terms of the Navier-Stokes equations (treated as forcing in the present formulation), which allowed us to compute the covariance matrix of the forcing for this case. The two covariances are related exactly by the resolvent operator; based on this, we explore the recovery of the velocity statistics from the statistics of the forcing as a function of the components of the forcing term. This is carried out for the dominant structures in this flow, which participate in the self-sustaining cycle of turbulence: (i) streamwise vortices and streaks, and (ii) spanwise coherent fluctuations of spanwise velocity. The present results show a dominance by four of the non-linear terms for the prediction of the full statistics of streamwise vortices and streaks; a single term is seen to be dominant for spanwise motions. A relevant feature observed in these cases is that forcing terms have significant coherence in space; moreover, different forcing components are also coherent between them. This leads to constructive and destructive interferences that greatly modify the flow response, and should thus be accounted for in modelling work.



قيم البحث

اقرأ أيضاً

The cross-spectral density (CSD) of the non-linear forcing in resolvent analyses is here quantified for the first time for turbulent channel flows. Direct numerical simulations (DNS) at $Re_{tau} =179$ and $Re_{tau} =543$ are performed. The CSDs are computed for highly energetic structures typical of buffer-layer and large-scale motions, for different temporal frequencies. The CSD of the non-linear forcing is shown not to be uncorrelated (white) in space, which implies the forcing is structured. Since the non-linear forcing is non-solenoidal by construction and the velocity of an incompressible flow is affected only by the solenoidal part of the forcing, this solenoidal part is evaluated. It is shown that the solenoidal part of the non-linear forcing is the combination of oblique streamwise vortices and a streamwise component which counteract each other, as in a destructive interference. It is shown that a rank-2 approximation of the forcing, with only the most energetic SPOD (spectral proper orthogonal decomposition) modes, leads to the bulk of the response. The projections of the non-linear forcing onto the right-singular vectors of the resolvent are evaluated. The left-singular vectors of the resolvent associated with very low-magnitude singular values are non-negligible since the non-linear forcing term has a non-negligible projection onto the linear sub-optimals of resolvent analysis. The same projections are computed when the forcing is modelled with an eddy-viscosity approach. It is clarified that this modelling improves the accuracy of the prediction since the projections are closer to those associated with the non-linear forcing from DNS data.
We seek possible statistical consequences of the way a forcing term is added to the Navier--Stokes equations in the Direct Numerical Simulation (DNS) of incompressible channel flow. Simulations driven by constant flow rate, constant pressure gradient and constant power input are used to build large databases, and in particular to store the complete temporal trace of the wall-shear stress for later analysis. As these approaches correspond to different dynamical systems, it can in principle be envisaged that these differences are reflect by certain statistics of the turbulent flow field. The instantaneous realizations of the flow in the various simulations are obviously different, but, as expected, the usual one-point, one-time statistics do not show any appreciable difference. However, the PDF for the fluctuations of the streamwise component of wall friction reveals that the simulation with constant flow rate presents lower probabilities for extreme events of large positive friction. The low probability value of such events explains their negligible contribution to the commonly computed statistics; however, the very existence of a difference in the PDF demonstrates that the forcing term is not entirely uninfluential. Other statistics for wall-based quantities (the two components of friction and pressure) are examined; in particular spatio-temporal autocorrelations show small differences at large temporal separations, where unfortunately the residual statistical uncertainty is still of the same order of the observed difference. Hence we suggest that the specific choice of the forcing term does not produce important statistical consequences, unless one is interested in the strongest events of high wall friction, that are underestimated by a simulation run at constant flow rate.
We report on the modification of drag by neutrally buoyant spherical particles in highly turbulent Taylor-Couette flow. These particles can be used to disentangle the effects of size, deformability, and volume fraction on the drag, when contrasted wi th the drag for bubbly flows. We find that rigid spheres hardly change the drag of the system beyond the trivial viscosity effects caused by replacing the working fluid with particles. The size of the particle has a marginal effect on the drag, with smaller diameter particles showing only slightly lower drag. Increasing the particle volume fraction shows a net drag increase as the effective viscosity of the fluid is also increased. The increase in drag for increasing particle volume fraction is corroborated by performing laser Doppler anemometry where we find that the turbulent velocity fluctuations also increase with increasing volume fraction. In contrast with rigid spheres, for bubbles the effective drag reduction also increases with increasing Reynolds number. Bubbles are also much more effective in reducing the overall drag.
In this paper, we experimentally study the influence of large-scale Taylor rolls on the small-scale statistics and the flow organization in fully turbulent Taylor-Couette flow {for Reynolds numbers up to $text{Re}_S=3times 10^5$}. The velocity field in the gap confined by coaxial and independently rotating cylinders at a radius ratio of $eta=0.714$ is measured using planar {particle image velocimetry} in horizontal planes at different cylinder heights. Flow regions with and without prominent Taylor vortices are compared. We show that the local angular momentum transport (expressed in terms of a Nusselt number) mainly takes place in the regions of the vortex in- and outflow, where the radial and azimuthal velocity components are highly correlated. The efficient momentum transfer is reflected in intermittent bursts, which becomes visible in the exponential tails of the probability density functions of the local Nusselt number. In addition, by calculating azimuthal energy co-spectra, small-scale plumes are revealed to be the underlying structure of these bursts. These flow features are very similar to the one observed in Rayleigh-B{e}nard convection, which emphasizes the analogies of these both systems. By performing a {complex proper orthogonal decomposition}, we remarkably detect azimuthally traveling waves superimposed on the turbulent Taylor vortices, not only in the classical but also in the ultimate regime. This very large-scale flow pattern{,} which is most pronounced at the axial location of the vortex center, is similar to the well-known wavy Taylor vortex flow{,} which has comparable wave speeds, but much larger azimuthal wave numbers.
136 - Paul Manneville 2016
Plane Couette flow presents a regular oblique turbulent-laminar pattern over a wide range of Reynolds numbers R between the globally stable base flow profile at low R<R_g and a uniformly turbulent regime at sufficiently large R>R_t. The numerical sim ulations that we have performed on a pattern displaying a wavelength modulation show a relaxation of that modulation in agreement with what one would expect from a standard approach in terms of dissipative structures in extended geometry though the structuration develops on a turbulent background. Some consequences are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا