ﻻ يوجد ملخص باللغة العربية
It is becoming widely accepted that very early in the origin of life, even before the emergence of genetic encoding, reaction networks of diverse small chemicals might have manifested key properties of life, namely self-propagation and adaptive evolution. To explore this possibility, we formalize the dynamics of chemical reaction networks within the framework of chemical ecosystem ecology. To capture the idea that life-like chemical systems are maintained out of equilibrium by fluxes of energy-rich food chemicals, we model chemical ecosystems in well-mixed containers that are subject to constant dilution by a solution with a fixed concentration of food chemicals. Modelling all chemical reactions as fully reversible, we show that seeding an autocatalytic cycle (AC) with tiny amounts of one or more of its member chemicals results in logistic growth of all member chemicals in the cycle. This finding justifies drawing an instructive analogy between an AC and the population of a biological species. We extend this finding to show that pairs of ACs can show competitive, predator-prey, or mutualistic associations just like biological species. Furthermore, when there is stochasticity in the environment, particularly in the seeding of ACs, chemical ecosystems can show complex dynamics that can resemble evolution. The evolutionary character is especially clear when the network architecture results in ecological precedence (survival of the first), which makes the path of succession historically contingent on the order in which cycles are seeded. For all its simplicity, the framework developed here is helpful for visualizing how autocatalysis in prebiotic chemical reaction networks can yield life-like properties. Furthermore, chemical ecosystem ecology could provide a useful foundation for exploring the emergence of adaptive dynamics and the origins of polymer-based genetic systems.
Many biochemical and industrial applications involve complicated networks of simultaneously occurring chemical reactions. Under the assumption of mass action kinetics, the dynamics of these chemical reaction networks are governed by systems of polyno
Reaction networks are commonly used within the mathematical biology and mathematical chemistry communities to model the dynamics of interacting species. These models differ from the typical graphs found in random graph theory since their vertices are
We are concerned with polynomial ordinary differential systems that arise from modelling chemical reaction networks. For such systems, which may be of high dimension and may depend on many parameters, it is frequently of interest to obtain a reductio
Autocatalysis underlies the ability of chemical and biochemical systems to replicate. Recently, Blokhuis et al. gave a stoechiometric definition of autocatalysis for reaction networks, stating the existence of a combination of reactions such that the
Deficiency zero is an important network structure and has been the focus of many celebrated results within reaction network theory. In our previous paper textit{Prevalence of deficiency zero reaction networks in an ErdH os-Renyi framework}, we provid