ﻻ يوجد ملخص باللغة العربية
In light of the potential use of single-molecule magnets (SMMs) in emerging quantum information science initiatives, we report first-principles calculations of the magnetic exchange interactions in [$mathrm{Mn}_{3}$]$_{2}$ dimers of $mathrm{Mn}_3$ SMMs, connected by covalently-attached organic linkers, that have been synthesized and studied experimentally by magnetochemistry and EPR spectroscopy. Energy evaluations calibrated to experimental results give the sign and order of magnitude of the exchange coupling constant ($J_{12}$) between the two $mathrm{Mn}_{3}$ units that match with fits of magnetic susceptibility data and EPR spectra. Downfolding into the $mathrm{Mn}$ $d$-orbital basis, Wannier function analysis has shown that magnetic interactions can be channeled by ligand groups that are bonded by van der Waals interaction and/or by the linkers via covalent bonding of specific systems, and effective tight-binding Hamiltonians are obtained. We call this long-range coupling that involves a group of atoms a collective exchange. Orbital projected spin density of states and alternative Wannier transformations support this observation. To assess the sensitivity of $J_{12}$ to external pressure, stress-strain curves have been investigated for both hydrostatic and uniaxial pressure, which have revealed a switch of $J_{12}$ from ferromagnetic to antiferromagnetic with increasing pressure.
We present a new family of exchange biased Single Molecule Magnets in which antiferromagnetic coupling between the two components results in quantum behaviour different from that of the individual SMMs. Our experimental observations and theoretical a
Lanthanide-based single-ion magnetic molecules can have large magnetic hyperfine interactions as well as large magnetic anisotropy. Recent experimental studies reported tunability of these properties by changes of chemical environments or by applicat
Direct evidence of quantum coherence in a single-molecule magnet in frozen solution is reported with coherence times as long as T2 = 630 ns. We can strongly increase the coherence time by modifying the matrix in which the single-molecule magnets are
We present a detailed study of the influence of various interactions on the spin quantum tunneling in a Mn12 wheel molecule. The effects of single-ion and exchange (spin-orbit) anisotropy are first considered, followed by an analysis of the roles pla
The Raman exponent of single-molecular magnetic relaxation may take various unexpected values because of rich phonon spectrum and spin-phonon coupling of molecular crystals. We systematically examine the origins of different abnormalities, and clarif