ﻻ يوجد ملخص باللغة العربية
A quasiclassical approximation is constructed to describe the eigenvalues of the magnetic Laplacian on a compact Riemannian manifold in the case when the magnetic field is not given by an exact 2-form. For this, the multidimensional WKB method in the form of Maslov canonical operator is applied. In this case, the canonical operator takes values in sections of a nontrivial line bundle. The constructed approximation is demonstrated for the Dirac magnetic monopole on the two-dimensional sphere.
We consider discrete spectra of bound states for non-relativistic motion in attractive potentials V_{sigma}(x) = -|V_{0}| |x|^{-sigma}, 0 < sigma leq 2. For these potentials the quasiclassical approximation for n -> infty predicts quantized energy le
We prove Liouville theorems for Dirac-harmonic maps from the Euclidean space $R^n$, the hyperbolic space $H^n$ and a Riemannian manifold $mathfrak{S^n}$ ($ngeq 3$) with the Schwarzschild metric to any Riemannian manifold $N$.
We introduce the notions of relational groupoids and relational convolution algebras. We provide various examples arising from the group algebra of a group $G$ and a given normal subgroup $H$. We also give conditions for the existence of a Haar syste
We give an explicit local formula for any formal deformation quantization, with separation of variables, on a Kahler manifold. The formula is given in terms of differential operators, parametrized by acyclic combinatorial graphs.
We develop isometry and inversion formulas for the Segal--Bargmann transform on odd-dimensional hyperbolic spaces that are as parallel as possible to the dual case of odd-dimensional spheres.