ترغب بنشر مسار تعليمي؟ اضغط هنا

Open Source Software Sustainability Models: Initial White Paper from the Informatics Technology for Cancer Research Sustainability and Industry Partnership Work Group

105   0   0.0 ( 0 )
 نشر من قبل Ye Ye
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

The Sustainability and Industry Partnership Work Group (SIP-WG) is a part of the National Cancer Institute Informatics Technology for Cancer Research (ITCR) program. The charter of the SIP-WG is to investigate options of long-term sustainability of open source software (OSS) developed by the ITCR, in part by developing a collection of business model archetypes that can serve as sustainability plans for ITCR OSS development initiatives. The workgroup assembled models from the ITCR program, from other studies, and via engagement of its extensive network of relationships with other organizations (e.g., Chan Zuckerberg Initiative, Open Source Initiative and Software Sustainability Institute). This article reviews existing sustainability models and describes ten OSS use cases disseminated by the SIP-WG and others, and highlights five essential attributes (alignment with unmet scientific needs, dedicated development team, vibrant user community, feasible licensing model, and sustainable financial model) to assist academic software developers in achieving best practice in software sustainability.



قيم البحث

اقرأ أيضاً

New facilities of the 2020s, such as the High Luminosity Large Hadron Collider (HL-LHC), will be relevant through at least the 2030s. This means that their software efforts and those that are used to analyze their data need to consider sustainability to enable their adaptability to new challenges, longevity, and efficiency, over at least this period. This will help ensure that this software will be easier to develop and maintain, that it remains available in the future on new platforms, that it meets new needs, and that it is as reusable as possible. This report discusses a virtual half-day workshop on Software Sustainability and High Energy Physics that aimed 1) to bring together experts from HEP as well as those from outside to share their experiences and practices, and 2) to articulate a vision that helps the Institute for Research and Innovation in Software for High Energy Physics (IRIS-HEP) to create a work plan to implement elements of software sustainability. Software sustainability practices could lead to new collaborations, including elements of HEP software being directly used outside the field, and, as has happened more frequently in recent years, to HEP developers contributing to software developed outside the field rather than reinventing it. A focus on and skills related to sustainable software will give HEP software developers an important skill that is essential to careers in the realm of software, inside or outside HEP. The report closes with recommendations to improve software sustainability in HEP, aimed at the HEP community via IRIS-HEP and the HEP Software Foundation (HSF).
A growing number of largely uncoordinated initiatives focus on research software sustainability. A comprehensive mapping of the research software sustainability space can help identify gaps in their efforts, track results, and avoid duplication of wo rk. To this end, this paper suggests enhancing an existing schematic of activities in research software sustainability, and formalizing it in a directed graph model. Such a model can be further used to define a classification schema which, applied to research results in the field, can drive the identification of past activities and the planning of future efforts.
Research software is essential to modern research, but it requires ongoing human effort to sustain: to continually adapt to changes in dependencies, to fix bugs, and to add new features. Software sustainability institutes, amongst others, develop, ma intain, and disseminate best practices for research software sustainability, and build community around them. These practices can both reduce the amount of effort that is needed and create an environment where the effort is appreciated and rewarded. The UK SSI is such an institute, and the US URSSI and the Australian AuSSI are planning to become institutes, and this extended abstract discusses them and the strengths and weaknesses of this approach.
The peer-to-peer (P2P) economy has been growing with the advent of the Internet, with well known brands such as Uber or Airbnb being examples thereof. In the insurance sector the approach is still in its infancy, but some companies have started to ex plore P2P-based collaborative insurance products (eg. Lemonade in the U.S. or Inspeer in France). The actuarial literature only recently started to consider those risk sharing mechanisms, as in Denuit and Robert (2021) or Feng et al. (2021). In this paper, describe and analyse such a P2P product, with some reciprocal risk sharing contracts. Here, we consider the case where policyholders still have an insurance contract, but the first self-insurance layer, below the deductible, can be shared with friends. We study the impact of the shape of the network (through the distribution of degrees) on the risk reduction. We consider also some optimal setting of the reciprocal commitments, and discuss the introduction of contracts with friends of friends to mitigate some possible drawbacks of having people without enough connections to exchange risks.
We report on a summer school course on Software Engineering for Sustainability (SE4S). We provide a detailed blueprint of the contents taught and its evaluation with the instruments that were used.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا