ﻻ يوجد ملخص باللغة العربية
We intend to investigate the metalogical property of omitting types for a wide variety of quantifier logics (that can also be seen as multimodal logics upon identifying existential quantifiers with modalities syntactically and semantically) exhibiting the essence of its abstract algebraic facet, namely, atom-canonicity, the last reflecting a well known persistence propery in modal logic. In the spirit of universal logic , with this algebraic abstraction at hand, the omitting types theorem OTT will be studied for various reducts extensions and variants (possibly allowing formulas of infinite length) of first order logic. Our investigatons are algebraic, addressing (non) atom canoicity of varieties of algebra of relations. In the course of our investigations, both negative and positive results will be presented. For example, we show that for any countable theory $L_n$ theory $T$ that has quantifier elimination $< 2^{omega}$ many non-principal complete types can be omitted. Furthermore, the maximality (completeness) condition, if eliminated, leads to an independent statement from $sf ZFC$ implied by Martins axiom. $sf OTT$s are approached for other algebraizable (in the classical Blok-Pigozzi sense) reformulations or/ a
The Omitting Types Theorem in model theory and the Baire Category Theorem in topology are known to be closely linked. We examine the precise relation between these two theorems. Working with a general notion of logic we show that the classical Omitti
We describe an infinitary logic for metric structures which is analogous to $L_{omega_1, omega}$. We show that this logic is capable of expressing several concepts from analysis that cannot be expressed in finitary continuous logic. Using topological
Let 2<nleq l<m< omega. Let L_n denote first order logic restricted to the first n variables. We show that the omitting types theorem fails dramatically for the n--variable fragments of first order logic with respect to clique guarded semantics, and f
Fix 2<n<omega. Let L_n denote first order logic restricted to the first n variables. CA_n denotes the class of cylindric algebras of dimension n and for m>n, Nr_nCA_m(subseteq CA_n) denotes the class of n-neat reducts of CA_ms. The existence of certa
In this paper we consider the normal modal logics of elementary classes defined by first-order formulas of the form $forall x_0 exists x_1 dots exists x_n bigwedge x_i R_lambda x_j$. We prove that many properties of these logics, such as finite axiom