ﻻ يوجد ملخص باللغة العربية
Reinforcement learning has witnessed recent applications to a variety of tasks in quantum programming. The underlying assumption is that those tasks could be modeled as Markov Decision Processes (MDPs). Here, we investigate the feasibility of this assumption by exploring its consequences for two of the simplest tasks in quantum programming: state preparation and gate compilation. By forming discrete MDPs, focusing exclusively on the single-qubit case, we solve for the optimal policy exactly through policy iteration. We find optimal paths that correspond to the shortest possible sequence of gates to prepare a state, or compile a gate, up to some target accuracy. As an example, we find sequences of H and T gates with length as small as 11 producing ~99% fidelity for states of the form (HT)^{n} |0> with values as large as n=10^{10}. This work provides strong evidence that reinforcement learning can be used for optimal state preparation and gate compilation for larger qubit spaces.
We present a synthesis framework to map logic networks into quantum circuits for quantum computing. The synthesis framework is based on LUT networks (lookup-table networks), which play a key role in conventional logic synthesis. Establishing a connec
We study the synthesis of mode switching protocols for a class of discrete-time switched linear systems in which the mode jumps are governed by Markov decision processes (MDPs). We call such systems MDP-JLS for brevity. Each state of the MDP correspo
The Markov assumption (MA) is fundamental to the empirical validity of reinforcement learning. In this paper, we propose a novel Forward-Backward Learning procedure to test MA in sequential decision making. The proposed test does not assume any param
To demonstrate the advantage of quantum computation, many attempts have been made to attack classically intractable problems, such as the satisfiability problem (SAT), with quantum computer. To use quantum algorithms to solve these NP-hard problems,
Integrated quantum photonics provides a promising route towards scalable solid-state implementations of quantum networks, quantum computers, and ultra-low power opto-electronic devices. A key component for many of these applications is the photonic q