ﻻ يوجد ملخص باللغة العربية
We consider the optimization problem associated with fitting two-layer ReLU networks with respect to the squared loss, where labels are assumed to be generated by a target network. Focusing first on standard Gaussian inputs, we show that the structure of spurious local minima detected by stochastic gradient descent (SGD) is, in a well-defined sense, the emph{least loss of symmetry} with respect to the target weights. A closer look at the analysis indicates that this principle of least symmetry breaking may apply to a broader range of settings. Motivated by this, we conduct a series of experiments which corroborate this hypothesis for different classes of non-isotropic non-product distributions, smooth activation functions and networks with a few layers.
We consider the optimization problem associated with fitting two-layers ReLU networks with respect to the squared loss, where labels are generated by a target network. We leverage the rich symmetry structure to analytically characterize the Hessian a
We present a theoretical and empirical study of the gradient dynamics of overparameterized shallow ReLU networks with one-dimensional input, solving least-squares interpolation. We show that the gradient dynamics of such networks are determined by th
Injectivity plays an important role in generative models where it enables inference; in inverse problems and compressed sensing with generative priors it is a precursor to well posedness. We establish sharp characterizations of injectivity of fully-c
This paper is devoted to establishing $L^2$ approximation properties for deep ReLU convolutional neural networks (CNNs) on two-dimensional space. The analysis is based on a decomposition theorem for convolutional kernels with large spatial size and m
It has been widely assumed that a neural network cannot be recovered from its outputs, as the network depends on its parameters in a highly nonlinear way. Here, we prove that in fact it is often possible to identify the architecture, weights, and bia