ﻻ يوجد ملخص باللغة العربية
The development and adopting of advanced communication technologies provide mobile users more convenience to connect any wireless network anytime and anywhere. Therefore, a large number of base stations (BS) are demanded keeping users connectivity, enhancing network capacity, and guarantee a sustained users Quality of Experiences (QoS). However, increasing the number of BS leads to an increase in the ecological ad radiation hazards. In order to green communication, many factors should be taken into consideration, i.e., saving energy, guarantee QoS, and reducing pollution hazards. Therefore, we propose tethered balloon technology that can replace a large number of BS and reduce ecological and radiation hazards due to its high altitude and feasible green and healthy broadband communication. The main contribution of this paper is to deploy tethered balloon technology at different altitude and measure the power density. Furthermore, we evaluate the measurement of power density from different height of tethered balloon comparison with traditional wireless communication technologies. The simulation results showed that tethered balloon technology can deliver green communication effectively and efficiently without any hazardous impacts.
Due to Unmanned aerial vehicles (UAVs) limitations in processing power and battery lifetime. The tethered UAV (TUAV) offers an attractive approach to answer these shortcomings. Since a tethered connected to UAV is one potential energy solution to pro
The concept of Smart Cities has been introduced as a way to benefit from the digitization of various ecosystems at a city level. To support this concept, future communication networks need to be carefully designed with respect to the city infrastruct
Tremendous technology development in the field of Internet of Things (IoT) has changed the way we work and live. Although the numerous advantages of IoT are enriching our society, it should be reminded that the IoT also consumes energy, embraces toxi
The digital retina in smart cities is to select what the City Eye tells the City Brain, and convert the acquired visual data from front-end visual sensors to features in an intelligent sensing manner. By deploying deep learning and/or handcrafted mod
The objective behind this project is to maximize the efficiency of land space, to decrease the driver stress and frustration, along with a considerable reduction in air pollution. Our contribution is in the form of an automatic parking system that is