ﻻ يوجد ملخص باللغة العربية
182 single-lined hot subdwarf stars are identified by using spectra from the sixth and seventh data release (DR6 and DR7) of the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) survey. We classified all the hot subdwarf stars using a canonical classification scheme, and got 89 sdB, 37 sdOB, 26 sdO, 24 He-sdOB, 3 He-sdO and 3 He-sdB stars, respectively. Among these stars, 108 hot subdwarfs are newly discovered, while 74 stars were reported by previous catalogs. The atmospheric parameters of these stars were obtained by fitting the hydrogen (H) and helium (He) lines with non-local thermodynamic equilibrium (non-LTE) model atmospheres. The atmospheric parameters confirm the two He sequences and the two subgroups of He-sdOB stars in our samples, which were found by previous studies in the T eff -log(nHe/nH) diagram. Our results demonstrate different origins of field hot subdwarf stars and extreme horizontal branch (EHB) stars in globular clusters (GCs), and provide strict observational limits on the formation and evolution models of the different sub-types of these evolved objects. Based on the results, we evaluated the completeness of the Geier et al. (2019) catalog. We found the fraction of hot subdwarf stars is between 10% and 60%, depending on the brightness of the sample. A more accurate estimation for the hot subdwarf fraction can be obtained when similar results from composite spectra will become available.
Combining the LAMOST radial velocities with Gaia parallaxes and proper motions, we presented 3D Galactic space motions and the orbits of 182 single-lined hot subdwarf stars. These stars have been identified by Lei et al. (2020) in Gaia DR2 with LAMOS
We present a catalog of 166 spectroscopically identified hot subdwarf stars from LAMOST DR1, 44 of which show the characteristics of cool companions in their optical spectra. Atmospheric parameters of 122 non-composite spectra subdwarf stars were mea
Based on the Gaia DR2 catalogue of hot subdwarf star candidates, we identified 1587 hot subdwarf stars with spectra in LAMOST DR7. We present atmospheric parameters for these stars by fitting the LAMOST spectra with {sc Tlusty/Synspec} non-LTE synthe
Combing Gaia DR2 with LAMOST DR5, we spectroscopically identified 924 hot subdwarf stars, among which 32 stars exhibit strong double-lined composite spectra. We measured the effective temperature $T_{rm eff}$, surface gravity $log,g$, helium abundanc
We set out to determine stellar labels from low-resolution survey spectra of hot, OBA stars with effective temperature (Teff) higher than 7500K. This fills a gap in the scientific analysis of large spectroscopic stellar surveys such as LAMOST, which