ﻻ يوجد ملخص باللغة العربية
We argue that nonperturbative CFT correlation functions admit a Mellin amplitude representation. Perturbative Mellin representation readily follows. We discuss the main properties of nonperturbative CFT Mellin amplitudes: subtractions, analyticity, unitarity, Polyakov conditions and polynomial boundedness at infinity. Mellin amplitudes are particularly simple for large N CFTs and 2D rational CFTs. We discuss these examples to illustrate our general discussion. We consider subtracted dispersion relations for Mellin amplitudes and use them to derive bootstrap bounds on CFTs. We combine crossing, dispersion relations and Polyakov conditions to write down a set of extremal functionals that act on the OPE data. We check these functionals using the known 3d Ising model OPE data and other known bootstrap constraints. We then apply them to holographic theories.
We construct the Mellin representation of four point conformal correlation function with external primary operators with arbitrary integer spacetime spins, and obtain a natural proposal for spinning Mellin amplitudes. By restricting to the exchange o
In any consistent massive quantum field theory there are well known bounds on scattering amplitudes at high energies. In conformal field theory there is no scattering amplitude, but the Mellin amplitude is a well defined object analogous to the scatt
We present a simple general relation between tree-level exchanges in AdS and dS. This relation allows to directly import techniques and results for AdS Witten diagrams, both in position and momentum space, to boundary correlation functions in dS. In
We study conformal partial waves (CPWs) in Mellin space with totally symmetric external operators of arbitrary integer spin. The exchanged spin is arbitrary, and includes mixed symmetry and (partially)-conserved representations. In a basis of CPWs re
We present a general framework to calculate the properties of relativistic compound systems from the knowledge of an elementary Hamiltonian. Our framework provides a well-controlled nonperturbative calculational scheme which can be systematically imp