ترغب بنشر مسار تعليمي؟ اضغط هنا

Low radiation tomographic reconstruction with and without template information

69   0   0.0 ( 0 )
 نشر من قبل Preeti Gopal Ms.
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-dose tomography is highly preferred in medical procedures for its reduced radiation risk when compared to standard-dose Computed Tomography (CT). However, the lower the intensity of X-rays, the higher the acquisition noise and hence the reconstructions suffer from artefacts. A large body of work has focussed on improving the algorithms to minimize these artefacts. In this work, we propose two new techniques, rescaled non-linear least squares and Poisson-Gaussian convolution, that reconstruct the underlying image making use of an accurate or near-accurate statistical model of the noise in the projections. We also propose a reconstruction method when prior knowledge of the underlying object is available in the form of templates. This is applicable to longitudinal studies wherein the same object is scanned multiple times to observe the changes that evolve in it over time. Our results on 3D data show that prior information can be used to compensate for the low-dose artefacts, and we demonstrate that it is possible to simultaneously prevent the prior from adversely biasing the reconstructions of new changes in the test object, via a method called ``re-irradiation. Additionally, we also present two techniques for automated tuning of the regularization parameters for tomographic inversion.



قيم البحث

اقرأ أيضاً

Tomographic image reconstruction with deep learning is an emerging field, but a recent landmark study reveals that several deep reconstruction networks are unstable for computed tomography (CT) and magnetic resonance imaging (MRI). Specifically, thre e kinds of instabilities were reported: (1) strong image artefacts from tiny perturbations, (2) small features missing in a deeply reconstructed image, and (3) decreased imaging performance with increased input data. On the other hand, compressed sensing (CS) inspired reconstruction methods do not suffer from these instabilities because of their built-in kernel awareness. For deep reconstruction to realize its full potential and become a mainstream approach for tomographic imaging, it is thus critically important to meet this challenge by stabilizing deep reconstruction networks. Here we propose an Analytic Compressed Iterative Deep (ACID) framework to address this challenge. ACID synergizes a deep reconstruction network trained on big data, kernel awareness from CS-inspired processing, and iterative refinement to minimize the data residual relative to real measurement. Our study demonstrates that the deep reconstruction using ACID is accurate and stable, and sheds light on the converging mechanism of the ACID iteration under a Bounded Relative Error Norm (BREN) condition. In particular, the study shows that ACID-based reconstruction is resilient against adversarial attacks, superior to classic sparsity-regularized reconstruction alone, and eliminates the three kinds of instabilities. We anticipate that this integrative data-driven approach will help promote development and translation of deep tomographic image reconstruction networks into clinical applications.
The need for tomographic reconstruction from sparse measurements arises when the measurement process is potentially harmful, needs to be rapid, or is uneconomical. In such cases, information from previous longitudinal scans of the same object helps t o reconstruct the current object while requiring significantly fewer updating measurements. Our work is based on longitudinal data acquisition scenarios where we wish to study new changes that evolve within an object over time, such as in repeated scanning for disease monitoring, or in tomography-guided surgical procedures. While this is easily feasible when measurements are acquired from a large number of projection views, it is challenging when the number of views is limited. If the goal is to track the changes while simultaneously reducing sub-sampling artefacts, we propose (1) acquiring measurements from a small number of views and using a global unweighted prior-based reconstruction. If the goal is to observe details of new changes, we propose (2) acquiring measurements from a moderate number of views and using a more involved reconstruction routine. We show that in the latter case, a weighted technique is necessary in order to prevent the prior from adversely affecting the reconstruction of new structures that are absent in any of the earlier scans. The reconstruction of new regions is safeguarded from the bias of the prior by computing regional weights that moderate the local influence of the priors. We are thus able to effectively reconstruct both the old and the new structures in the test. In addition to testing on simulated data, we have validated the efficacy of our method on real tomographic data. The results demonstrate the use of both unweighted and weighted priors in different scenarios.
A novel method, utilizing convolutional neural networks (CNNs), is proposed to reconstruct hyperspectral cubes from computed tomography imaging spectrometer (CTIS) images. Current reconstruction algorithms are usually subject to long reconstruction t imes and mediocre precision in cases of a large number of spectral channels. The constructed CNNs deliver higher precision and shorter reconstruction time than a standard expectation maximization algorithm. In addition, the network can handle two different types of real-world images at the same time -- specifically ColorChecker and carrot spectral images are considered. This work paves the way toward real-time reconstruction of hyperspectral cubes from CTIS images.
We propose a novel deep neural network architecture by mapping the robust proximal gradient scheme for fast image reconstruction in parallel MRI (pMRI) with regularization function trained from data. The proposed network learns to adaptively combine the multi-coil images from incomplete pMRI data into a single image with homogeneous contrast, which is then passed to a nonlinear encoder to efficiently extract sparse features of the image. Unlike most of existing deep image reconstruction networks, our network does not require knowledge of sensitivity maps, which can be difficult to estimate accurately, and have been a major bottleneck of image reconstruction in real-world pMRI applications. The experimental results demonstrate the promising performance of our method on a variety of pMRI imaging data sets.
One of the key limitations in conventional deep learning based image reconstruction is the need for registered pairs of training images containing a set of high-quality groundtruth images. This paper addresses this limitation by proposing a novel uns upervised deep registration-augmented reconstruction method (U-Dream) for training deep neural nets to reconstruct high-quality images by directly mapping pairs of unregistered and artifact-corrupted images. The ability of U-Dream to circumvent the need for accurately registered data makes it widely applicable to many biomedical image reconstruction tasks. We validate it in accelerated magnetic resonance imaging (MRI) by training an image reconstruction model directly on pairs of undersampled measurements from images that have undergone nonrigid deformations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا