ﻻ يوجد ملخص باللغة العربية
As data analytics becomes more crucial to digital systems, so grows the importance of characterizing the database queries that admit a more efficient evaluation. We consider the tractability yardstick of answer enumeration with a polylogarithmic delay after a linear-time preprocessing phase. Such an evaluation is obtained by constructing, in the preprocessing phase, a data structure that supports polylogarithmic-delay enumeration. In this paper, we seek a structure that supports the more demanding task of a random permutation: polylogarithmic-delay enumeration in truly random order. Enumeration of this kind is required if downstream applications assume that the intermediate results are representative of the whole result set in a statistically valuable manner. An even more demanding task is that of a random access: polylogarithmic-time retrieval of an answer whose position is given. We establish that the free-connex acyclic CQs are tractable in all three senses: enumeration, random-order enumeration, and random access; and in the absence of self-joins, it follows from past results that every other CQ is intractable by each of the three (under some fine-grained complexity assumptions). However, the three yardsticks are separated in the case of a union of CQs (UCQ): while a union of free-connex acyclic CQs has a tractable enumeration, it may (provably) admit no random access. For such UCQs we devise a random-order enumeration whose delay is logarithmic in expectation. We also identify a subclass of UCQs for which we can provide random access with polylogarithmic access time. Finally, we present an implementation and an empirical study that show a considerable practical superiority of our random-order enumeration approach over state-of-the-art alternatives.
We consider the task of enumerating and counting answers to $k$-ary conjunctive queries against relational databases that may be updated by inserting or deleting tuples. We exhibit a new notion of q-hierarchical conjunctive queries and show that thes
We study the $generalized~model~counting~problem$, defined as follows: given a database, and a set of deterministic tuples, count the number of subsets of the database that include all deterministic tuples and satisfy the query. This problem is compu
Marx (STOC~2010, J.~ACM 2013) introduced the notion of submodular width of a conjunctive query (CQ) and showed that for any class $Phi$ of Boolean CQs of bounded submodular width, the model-checking problem for $Phi$ on the class of all finite struct
A dominant cost for query evaluation in modern massively distributed systems is the number of communication rounds. For this reason, there is a growing interest in single-round multiway join algorithms where data is first reshuffled over many servers
Structural indexing is an approach to accelerating query evaluation, whereby data objects are partitioned and indexed reflecting the precise expressive power of a given query language. Each partition block of the index holds exactly those objects tha