ﻻ يوجد ملخص باللغة العربية
The recent gravitational wave measurements have demonstrated the existence of stellar mass black hole binaries. It is essential for our understanding of massive star evolution to identify the contribution of binary evolution to the formation of double black holes. A promising way to progress is investigating the progenitors of double black hole systems and comparing predictions with local massive star samples such as the population in 30 Doradus in the Large Magellanic Cloud (LMC). Methods. To this purpose, we analyse a large grid of detailed binary evolution models at LMC metallicity with initial primary masses between 10 and 40 Msun, and identify which model systems potentially evolve into a binary consisting of a black hole and a massive main sequence star. We then derive the observable properties of such systems, as well as peculiarities of the OB star component. We find that about 3% of the LMC late O and early B stars in binaries are expected to possess a black hole companion, when assuming stars with a final helium core mass above 6.6 M to form black holes. While the vast majority of them may be X-ray quiet, our models suggest that these may be identified in spectroscopic binaries, either by large amplitude radial velocity variations ( > 50 km s ) and simultaneous nitrogen surface enrichment, or through a moderate radial velocity ( > 10 km/s ) and simultaneously rapid rotation of the OB star. The predicted mass ratios are such that main sequence companions could be excluded in most cases. A comparison to the observed OB+WR binaries in the LMC, Be/X-ray binaries, and known massive BH binaries supports our conclusion. We expect spectroscopic observations to be able to test key assumptions in our models, with important implications for massive star evolution in general, and for the formation of double-black hole mergers in particular.
All stellar mass black holes have hitherto been identified by X-rays emitted by gas that is accreting onto the black hole from a companion star. These systems are all binaries with black holes below 30 M$_{odot}$$^{1-4}$. Theory predicts, however, th
Common-envelope (CE) evolution in massive binary systems is thought to be one of the most promising channels for the formation of compact binary mergers. In the case of merging binary black holes (BBHs), the essential CE phase takes place at a stage
Thompson et al. (Reports, 1 November 2019, p. 637, Science) interpreted the unseen companion of the red giant star 2MASS J05215658+4359220 as most likely a black hole. We argue that if the red giant is about one solar mass, its companion can be a clo
On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were anal
Analyses of multi-epoch, high-resolution (~ 50000) optical spectra of seven early-type systems provided various important new insights with respect to their multiplicity. First determinations of orbital periods were made for HD 92206C (2.022 d), HD 1