ﻻ يوجد ملخص باللغة العربية
Image compression using neural networks have reached or exceeded non-neural methods (such as JPEG, WebP, BPG). While these networks are state of the art in ratedistortion performance, computational feasibility of these models remains a challenge. We apply automatic network optimization techniques to reduce the computational complexity of a popular architecture used in neural image compression, analyze the decoder complexity in execution runtime and explore the trade-offs between two distortion metrics, rate-distortion performance and run-time performance to design and research more computationally efficient neural image compression. We find that our method decreases the decoder run-time requirements by over 50% for a stateof-the-art neural architecture.
In this manuscript we propose two objective terms for neural image compression: a compression objective and a cycle loss. These terms are applied on the encoder output of an autoencoder and are used in combination with reconstruction losses. The comp
We describe Substitutional Neural Image Compression (SNIC), a general approach for enhancing any neural image compression model, that requires no data or additional tuning of the trained model. It boosts compression performance toward a flexible dist
For learned image compression, the autoregressive context model is proved effective in improving the rate-distortion (RD) performance. Because it helps remove spatial redundancies among latent representations. However, the decoding process must be do
End-to-end optimization capability offers neural image compression (NIC) superior lossy compression performance. However, distinct models are required to be trained to reach different points in the rate-distortion (R-D) space. In this paper, we consi
The traditional image compressors, e.g., BPG and H.266, have achieved great image and video compression quality. Recently, Convolutional Neural Network has been used widely in image compression. We proposed an attention-based convolutional neural net