ﻻ يوجد ملخص باللغة العربية
Three high-spin phases recently discovered in the spin-crossover system Mn(taa) are identified through analysis by a combination of first-principles calculations and Monte Carlo simulation as a low-temperature Jahn-Teller ordered (solid) phase, an intermediate-temperature dynamically correlated (liquid) phase, and an uncorrelated (gas) phase. In particular, the Jahn-Teller liquid phase arises from competition between mixing with low-spin impurities, which drive the disorder, and inter-molecular strain interactions. The latter are a key factor in both the spin-crossover phase transition and the magnetoelectric coupling. Jahn-Teller liquids may exist in other spin-crossover materials and materials that have multiple equivalent Jahn-Teller axes.
We examine the effect of small amounts of magnetic substituents in the $A$ sites of the frustrated spinels MgCr$_2$O$_4$ and ZnCr$_2$O$_4$. Specifically we look for the effects of spin and lattice disorder on structural changes accompanying magnetic
The optical transition linewidth and emission polarization of single nitrogen-vacancy (NV) centers are measured from 5 K to room temperature. Inter-excited state population relaxation is shown to broaden the zero-phonon line and both the relaxation a
The Jahn-Teller distortion, by its very nature, is often at the heart of the various electronic properties displayed by perovskites and related materials. Despite the Jahn-Teller mode being non- polar in nature, we devise and demonstrate in the prese
We present an ab-initio and analytical study of the Jahn-Teller effect in two diluted magnetic semiconductors (DMS) with d4 impurities, namely Mn-doped GaN and Cr-doped ZnS. We show that only the combined treatment of Jahn-Teller distortion and stron
Ca3CoMnO6 is composed of CoMnO6 chains made up of face-sharing CoO6 trigonal prisms and MnO6 octahedra. The structural, magnetic, and ferroelectric properties of this compound were investigated on the basis of density functional theory calculations.