ترغب بنشر مسار تعليمي؟ اضغط هنا

Knowledge forest: a novel model to organize knowledge fragments

269   0   0.0 ( 0 )
 نشر من قبل Hongwei Zeng
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With the rapid growth of knowledge, it shows a steady trend of knowledge fragmentization. Knowledge fragmentization manifests as that the knowledge related to a specific topic in a course is scattered in isolated and autonomous knowledge sources. We term the knowledge of a facet in a specific topic as a knowledge fragment. The problem of knowledge fragmentization brings two challenges: First, knowledge is scattered in various knowledge sources, which exerts users considerable efforts to search for the knowledge of their interested topics, thereby leading to information overload. Second, learning dependencies which refer to the precedence relationships between topics in the learning process are concealed by the isolation and autonomy of knowledge sources, thus causing learning disorientation. To solve the knowledge fragmentization problem, we propose a novel knowledge organization model, knowledge forest, which consists of facet trees and learning dependencies. Facet trees can organize knowledge fragments with facet hyponymy to alleviate information overload. Learning dependencies can organize disordered topics to cope with learning disorientation. We conduct extensive experiments on three manually constructed datasets from the Data Structure, Data Mining, and Computer Network courses, and the experimental results show that knowledge forest can effectively organize knowledge fragments, and alleviate information overload and learning disorientation.



قيم البحث

اقرأ أيضاً

Commonsense knowledge acquisition is a key problem for artificial intelligence. Conventional methods of acquiring commonsense knowledge generally require laborious and costly human annotations, which are not feasible on a large scale. In this paper, we explore a practical way of mining commonsense knowledge from linguistic graphs, with the goal of transferring cheap knowledge obtained with linguistic patterns into expensive commonsense knowledge. The result is a conversion of ASER [Zhang et al., 2020], a large-scale selectional preference knowledge resource, into TransOMCS, of the same representation as ConceptNet [Liu and Singh, 2004] but two orders of magnitude larger. Experimental results demonstrate the transferability of linguistic knowledge to commonsense knowledge and the effectiveness of the proposed approach in terms of quantity, novelty, and quality. TransOMCS is publicly available at: https://github.com/HKUST-KnowComp/TransOMCS.
In the task of factoid question answering over knowledge base, many questions have more than one plausible interpretation. Previous works on SimpleQuestions assume only one interpretation as the ground truth for each question, so they lack the abilit y to answer ambiguous questions correctly. In this paper, we present a new way to utilize the dataset that takes into account the existence of ambiguous questions. Then we introduce a simple and effective model which combines local knowledge subgraph with attention mechanism. Our experimental results show that our approach achieves outstanding performance in this task.
Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.
Most work on building knowledge bases has focused on collecting entities and facts from as large a collection of documents as possible. We argue for and describe a new paradigm where the focus is on a high-recall extraction over a small collection of documents under the supervision of a human expert, that we call Interactive Knowledge Base Population (IKBP).
465 - Linfeng Li , Peng Wang , Yao Wang 2019
This paper proposes an algorithm named as PrTransH to learn embedding vectors from real world EMR data based medical knowledge. The unique challenge in embedding medical knowledge graph from real world EMR data is that the uncertainty of knowledge tr iplets blurs the border between correct triplet and wrong triplet, changing the fundamental assumption of many existing algorithms. To address the challenge, some enhancements are made to existing TransH algorithm, including: 1) involve probability of medical knowledge triplet into training objective; 2) replace the margin-based ranking loss with unified loss calculation considering both valid and corrupted triplets; 3) augment training data set with medical background knowledge. Verifications on real world EMR data based medical knowledge graph prove that PrTransH outperforms TransH in link prediction task. To the best of our survey, this paper is the first one to learn and verify knowledge embedding on probabilistic knowledge graphs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا