ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature Profiles of Hot Gas In Early Type Galaxies

205   0   0.0 ( 0 )
 نشر من قبل Dong-Woo Kim
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the data products of the Chandra Galaxy Atlas (Kim et al. 2019a), we have investigated the radial profiles of the hot gas temperature in 60 early type galaxies. Considering the characteristic temperature and radius of the peak, dip, and break (when scaled by the gas temperature and virial radius of each galaxy), we propose a universal temperature profile of the hot halo in ETGs. In this scheme, the hot gas temperature peaks at RMAX = 35 +/- 25 kpc (or ~0.04 RVIR) and declines both inward and outward. The temperature dips (or breaks) at RMIN (or RBREAK) = 3 - 5 kpc (or ~0.006 RVIR). The mean slope between RMIN (RBREAK) and RMAX is 0.3 +/- 0.1. Allowing for selection effects and observational limits, we find that the universal temperature profile can describe the temperature profiles of 72% (possibly up to 82%) of our ETG sample. The remaining ETGs (18%) with irregular or monotonically declining profiles do not fit the universal profile and require another explanation. The temperature gradient inside RMIN (RBREAK) varies widely, indicating different degrees of additional heating at small radii. Investigating the nature of the hot core (HC with a negative gradient inside RMIN), we find that HC is most clearly visible in small galaxies. Searching for potential clues associated with stellar, AGN feedback, and gravitational heating, we find that HC may be related to recent star formation. But we see no clear evidence that AGN feedback and gravitational heating play any significant role for HC.



قيم البحث

اقرأ أيضاً

142 - S. Pellegrini 2011
Recently, the temperature T and luminosity L_X of the hot gas halos of early type galaxies have been derived with unprecedented accuracy from Chandra data, for 30 galaxies covering a wider range of galactic luminosity (and central velocity dispersion sigma_c) than before. This work investigates the origin of the observed temperatures, by examining the relationship between them and the galaxy structure, the gas heating due to Type Ia supernovae (SNIas) and the gravitational potential, and the dynamical status of the gas flow. In galaxies with sigma_c<200 km/s, the Ts are close to a fiducial average temperature for the gas when in outflow; at 200<sigma_c (km/s)<250, the Ts are generally lower than this, and unrelated with sigma_c, which requires a more complex gas flow status; at larger sigma_c, the Ts may increase as sigma_c^2, as expected for infall heating, though heating from SNIas, independent of sigma_c, should be dominant. All observed Ts are larger than the virial temperature, by up to ~0.5 keV. This additional heating can be provided in the X-ray brightest galaxies by SNIas and infall heating, with a SNIas energy input even lower than in standard assumptions; in the X-ray fainter ones it can be provided by SNIas, whose energy input would be required close to the full standard value at the largest sigma_c. This same energy input, though, would produce temperatures larger than observed at low sigma_c, if entirely thermalized. The values of the observed Ts increase from outflows to inflows; the gas is relatively hotter in outflows, though, if the Ts are rescaled by the virial temperature. For 200<sigma_c(km/s)<250, lower L_X values tend to correspond to lower Ts, which deserves further investigation.
Optically-similar early-type galaxies are observed to have a large and poorly understood range in the amount of hot, X-ray-emitting gas they contain.To investigate the origin of this diversity, we studied the hot gas properties of all 42 early-type g alaxies in the multiwavelength ATLAS$^{rm 3D}$ survey that have sufficiently deep {sl Chandra} X-ray observations. We related their hot gas properties to a number of internal and external physical quantities. To characterize the amount of hot gas relative to the stellar light, we use the ratio of the gaseous X-ray luminosity to the stellar $K$-band luminosity, $L_{X_{rm gas}}/L_K$; we also use the deviations of $L_{X_{rm gas}}$ from the best-fit $L_{X_{rm gas}}$--$L_K$ relation (denoted $Delta L_{X_{rm gas}}$). We quantitatively confirm previous suggestions that various effects conspire to produce the large scatter in the observed $L_X/L_K$ relation. In particular, we find that the deviations $Delta L_{X_{rm gas}}$ are most strongly positively correlated with the (low rates of) star formation and the hot gas temperatures in the sample galaxies. This suggests that mild stellar feedback may energize the gas without pushing it out of the host galaxies. We also find that galaxies in high galaxy density environments tend to be massive slow-rotators, while galaxies in low galaxy density environments tend to be low mass, fast-rotators. Moreover, cold gas in clusters and fields may have different origins. The star formation rate increases with cold gas mass for field galaxies but it appears to be uncorrelated with cold gas for cluster galaxies.
A recent determination of the relationships between the X-ray luminosity of the ISM (Lx) and the stellar and total mass, for a sample of nearby early-type galaxies (ETGs), is used to investigate the origin of the hot gas, via a comparison with the re sults of hydrodynamical simulations of the ISM evolution for a large set of isolated ETGs. After the epoch of major galaxy formation (after z~2), the ISM is replenished by stellar mass losses and SN ejecta, at the rate predicted by stellar evolution, and is depleted by star formation; it is heated by the thermalization of stellar motions, SNe explosions and the mechanical (from winds) and radiative AGN feedback. The models agree well with the observed relations, even for the largely different Lx values at the same mass, thanks to the sensitivity of the gas flow to many galaxy properties; this holds for models including AGN feedback, and those without. Therefore, the mass input from the stellar population is able to account for a major part of the observed Lx; and AGN feedback, while very important to maintain massive ETGs in a time-averaged quasi-steady state, keeping low star formation and the black hole mass, does not dramatically alter the gas content originating in stellar recycled material. These conclusions are based on theoretical predictions for the stellar population contributions in mass and energy, and on a self-consistent modeling of AGN feedback.
68 - V. Korol 2016
Accretion onto central massive black holes in galaxies is often modelled with the Bondi solution. In this paper we study a generalization of the classical Bondi accretion theory, considering the additional effects of the gravitational potential of th e host galaxy, and of electron scattering in the optically thin limit. We provide a general analysis of the bias in the estimates of the Bondi radius and mass accretion rate, when adopting as fiducial values for the density and temperature at infinity the values of these quantities measured at finite distance from the central black hole. We also give general formulae to compute the correction terms of the critical accretion parameter in relevant asymptotic regimes. A full analytical discussion is presented in the case of an Hernquist galaxy, when the problem reduces to the discussion of a cubic equation, therefore allowing for more than one critical point in the accretion structure. The results are useful for observational works (especially in the case of low-luminosity systems), as well as for numerical simulations, where accretion rates are usually defined in terms of the gas properties near the
We present a systematic study of the diffuse hot gas around early-type galaxies (ETGs) residing in the Virgo cluster, based on archival {it Chandra} observations. Our representative sample consists of 79 galaxies with low-to-intermediate stellar mass es ($M_* approx 10^{9-11}rm~M_odot$), a mass range that has not been extensively explored with X-ray observations thus far. We detect diffuse X-ray emission in only eight galaxies and find that in five cases a substantial fraction of the detected emission can be unambiguously attributed to truly diffuse hot gas, based on their spatial distribution and spectral properties. For the individually non-detected galaxies, we constrain their average X-ray emission by performing a stacking analysis, finding a specific X-ray luminosity of $L_{rm X}/M_* sim 10^{28}{rm~erg~s^{-1}~M_{odot}^{-1}}$, which is consistent with unresolved stellar populations. The apparent paucity of truly diffuse hot gas in these low- and intermediate-mass ETGs may be the result of efficient ram pressure stripping by the hot intra-cluster medium. However, we also find no significant diffuse hot gas in a comparison sample of 57 field ETGs of similar stellar masses, for which archival {it Chandra} observations with similar sensitivity are available. This points to the alternative possibility that galactic winds evacuate the hot gas from the inner region of low- and intermediate-mass ETGs, regardless of the galactic environment. Nevertheless, we do find strong morphological evidence for on-going ram pressure stripping in two galaxies (NGC 4417 and NGC 4459). A better understanding of the roles of ram pressure stripping and galactic winds in regulating the hot gas content of ETGs, invites sensitive X-ray observations for a large galaxy sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا