ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the mid-layer structure of red giants I. Mixed-mode coupling factor as a seismic diagnosis

68   0   0.0 ( 0 )
 نشر من قبل Charly Pin\\c{c}on
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The space-borne missions CoRoT and Kepler have already brought stringent constraints on the internal structure of low-mass evolved stars, a large part of which results from the detection of mixed modes. However, all the potential of these oscillation modes as a diagnosis of the stellar interior has not been fully exploited yet. In particular, the coupling factor or the gravity-offset of mixed modes, $q$ and $varepsilon_{rm g}$, are expected to provide additional constraints on the mid-layers of red giants, which are located between the hydrogen-burning shell and the neighborhood of the base of the convective zone. In the present paper, we investigate the potential of the coupling factor in probing the mid-layer structure of evolved stars. Guided by typical stellar models and general physical considerations, we modeled the coupling region along with evolution. We subsequently obtained an analytical expression of $q$ based on the asymptotic theory of mixed modes and compared it to observations. We show that the value of $q$ is degenerate with respect to the thickness of the coupling evanescent region and the local density scale height. A structural interpretation of the global variations in $q$ observed on the subgiant and the red giant branches, as well as on the red clump, was obtained in the light of this model. We demonstrate that $q$ has the promising potential to probe the migration of the base of the convective region as well as convective extra-mixing in evolved red giant stars with typically $ u_{rm max} lesssim 100~mu$Hz. We also show that the frequency-dependence of $q$ cannot be neglected in the oscillation spectra of such stars, which is in contrast with what is assumed in the current measurement methods. This analytical study paves the way for a more quantitative exploration of the link of $q$ with the internal properties of evolved stars using stellar models.



قيم البحث

اقرأ أيضاً

109 - L. Bugnet , V. Prat , S. Mathis 2021
The discovery of the moderate differential rotation between the core and the envelope of evolved solar-like stars could be the signature of a strong magnetic field trapped inside the radiative interior. The population of intermediate-mass red giants presenting a surprisingly low-amplitude of their mixed modes could also arise from the effect of an internal magnetic field. Indeed, stars more massive than about 1.1Ms are known to develop a convective core during their main sequence, which could relax into a strong fossil magnetic field trapped inside the core of the star for the rest of its evolution. The observations of mixed modes can constitute an excellent probe of the deepest layers of evolved solar-like stars. The magnetic perturbation on mixed modes may thus be visible in asteroseismic data. To unravel which constraints can be obtained from observations, we theoretically investigate the effects of a plausible mixed axisymmetric magnetic field with various amplitudes on the mixed-mode frequencies of evolved solar-like stars. The first-order frequency perturbations are computed for dipolar and quadrupolar mixed modes. These computations are carried out for a range of stellar ages, masses, and metallicities. We show that typical fossil-field strengths of 0.1-1 MG, consistent with the presence of a dynamo in the convective core during the main sequence, provoke significant asymmetries on mixed-mode frequency multiplets during the red-giant branch. We show that these signatures may be detectable in asteroseismic data for field amplitudes small enough for the amplitude of the modes not to be affected by the conversion of gravity into Alfven waves inside the magnetised interior. Finally, we infer an upper limit for the strength of the field, and the associated lower limit for the timescale of its action, to redistribute angular momentum in stellar interiors.
Asteroseismic studies of red giants generally assume that the oscillation modes can be treated as linear perturbations to the background star. However, observations by the Kepler mission show that the oscillation amplitudes increase dramatically as s tars ascend the red giant branch. The importance of nonlinear effects should therefore be assessed. In previous work, we found that mixed modes in red giants are unstable to nonlinear three-wave interactions over a broad range of stellar mass and evolutionary state. Here we solve the amplitude equations that describe the mode dynamics for large networks of nonlinearly coupled modes. The networks consist of stochastically driven parent modes coupled to resonant secondary modes (daughters, granddaughters, etc.). We find that nonlinear interactions can lower the energy of gravity-dominated mixed modes by $gtrsim 80%$ compared to linear theory. However, they have only a mild influence on the energy of pressure-dominated mixed modes. Expressed in terms of the dipole mode visibility $V^2$, i.e., the summed amplitudes of dipole modes relative to radial modes, we find that $V^2$ can be suppressed by $50-80%$ relative to the linear value for highly-evolved red giants whose frequency of maximum power $ u_{rm max} lesssim 100,mutextrm{Hz}$. However, for less evolved red giants with $150lesssim u_{rm max} lesssim 200,mutextrm{Hz}$, $V^2$ is suppressed by only $10-20%$. We conclude that resonant mode coupling can have a potentially detectable effect on oscillations at $ u_{rm max} lesssim 100,mutextrm{Hz}$ but it cannot account for the population of red giants that exhibit dipole modes with unusually small amplitudes at high $ u_{rm max}$.
We report for the first time a parametric fit to the pattern of the ell = 1 mixed modes in red giants, which is a powerful tool to identify gravity-dominated mixed modes. With these modes, which share the characteristics of pressure and gravity modes , we are able to probe directly the helium core and the surrounding shell where hydrogen is burning. We propose two ways for describing the so-called mode bumping that affects the frequencies of the mixed modes. Firstly, a phenomenological approach is used to describe the main features of the mode bumping. Alternatively, a quasi-asymptotic mixed-mode relation provides a powerful link between seismic observations and the stellar interior structure. We used period echelle diagrams to emphasize the detection of the gravity-dominated mixed modes. The asymptotic relation for mixed modes is confirmed. It allows us to measure the gravity-mode period spacings in more than two hundred red giant stars. The identification of the gravity-dominated mixed modes allows us to complete the identification of all major peaks in a red giant oscillation spectrum, with significant consequences for the true identification of ell = 3 modes, of ell = 2 mixed modes, for the mode widths and amplitudes, and for the ell = 1 rotational splittings. The accurate measurement of the gravity-mode period spacing provides an effective probe of the inner, g-mode cavity. The derived value of the coupling coefficient between the cavities is different for red giant branch and clump stars. This provides a probe of the hydrogen-shell burning region that surrounds the helium core. Core contraction as red giants ascend the red giant branch can be explored using the variation of the gravity-mode spacing as a function of the mean large separation.
The power of asteroseismology relies on the capability of global oscillations to infer the stellar structure. For evolved stars, we benefit from unique information directly carried out by mixed modes that probe their radiative cores. This third artic le of the series devoted to mixed modes in red giants focuses on their coupling factors that remained largely unexploited up to now. With the measurement of the coupling factors, we intend to give physical constraints on the regions surrounding the radiative core and the hydrogen-burning shell of subgiants and red giants. A new method for measuring the coupling factor of mixed modes is set up. It is derived from the method recently implemented for measuring period spacings. It runs in an automated way so that it can be applied to a large sample of stars. Coupling factors of mixed modes were measured for thousands of red giants. They show specific variation with mass and evolutionary stage. Weak coupling is observed for the most evolved stars on the red giant branch only; large coupling factors are measured at the transition between subgiants and red giants, as well as in the red clump. The measurement of coupling factors in dipole mixed modes provides a new insight into the inner interior structure of evolved stars. While the large frequency separation and the asymptotic period spacings probe the envelope and the core, respectively, the coupling factor is directly sensitive to the intermediate region in between and helps determining its extent. Observationally, the determination of the coupling factor is a prior to precise fits of the mixed-mode pattern, and can now be used to address further properties of the mixed-mode pattern, as the signature of the buoyancy glitches and the core rotation.
Oscillation modes with a mixed character, as observed in evolved low-mass stars, are highly sensitive to the physical properties of the innermost regions. Measuring their properties is therefore extremely important to probe the core, but requires som e care, due to the complexity of the mixed-mode pattern. This work aims at providing a consistent description of the mixed-mode pattern of low-mass stars, based on the asymptotic expansion. We also aim at studying the variation of the gravity offset $varepsilon_{g}$ with stellar evolution. We revisit previous work about mixed modes in red giants and empirically test how period spacings, rotational splittings, mixed-mode widths and heights can be estimated in a consistent view, based on the properties of the mode inertia ratios. From the asymptotic fit of the mixed-mode pattern of a large set of red giants at various evolutionary stages, we derive unbiased and precise asymptotic parameters. As the asymptotic expansion of gravity modes is verified with a precision close to the frequency resolution for stars on the red giant branch (10$^{-4}$ in relative values), we can derive accurate values of the asymptotic parameters. We decipher the complex pattern in a rapidly rotating star, and explain how asymmetrical splittings can be inferred, as well as the stellar inclinations. This allows us to revisit the stellar inclinations in two open clusters, NGC 6819 and NGC 6791: our results show that the stellar inclinations in these clusters do not have privileged orientation in the sky. The variation of the asymptotic gravity offset along with stellar evolution is investigated in detail. We also derive generic properties that explain under which conditions mixed modes can be observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا