ﻻ يوجد ملخص باللغة العربية
We propose a protocol for generating generalized GHZ states using ultracold fermions in 3D optical lattices or optical tweezer arrays. The protocol uses the interplay between laser driving, onsite interactions and external trapping confinement to enforce energetic spin- and position-dependent constraints on the atomic motion. These constraints allow us to transform a local superposition into a GHZ state through a stepwise protocol that flips one site at a time. The protocol requires no site-resolved drives or spin-dependent potentials, exhibits robustness to slow global laser phase drift, and naturally makes use of the harmonic trap that would normally cause difficulties for entanglement-generating protocols in optical lattices. We also discuss an improved protocol that can compensate for holes in the loadout at the cost of increased generation time. The state can immediately be used for quantum-enhanced metrology in 3D optical lattice clocks, opening a window to push the sensitivity of state-of-the-art sensors beyond the standard quantum limit.
Measurement-based quantum computation, an alternative paradigm for quantum information processing, uses simple measurements on qubits prepared in cluster states, a class of multiparty entangled states with useful properties. Here we propose and analy
We propose to use fermionic atoms with degenerate ground and excited internal levels ($F_grightarrow F_e$), loaded into the motional ground state of an optical lattice with two atoms per lattice site, to realize dark states with no radiative decay. T
One of the most important tasks in modern quantum science is to coherently control and entangle many-body systems, and to subsequently use these systems to realize powerful quantum technologies such as quantum-enhanced sensors. However, many-body ent
Atomic interferometry in optical lattices is a new trend of developing practical quantum gravimeter. Here, we propose a compact and portable gravimetry scheme with an ensemble of ultracold atoms in gravitationally tilted spin-dependent optical lattic
We investigate the subradiance properties of $ngeq 2$ multilevel fermionic atoms loaded into the lowest motional level of a single trap (e.g.~a single optical lattice site or an optical tweezer). As pointed out in our previous work [arXiv:1907.05541]