ﻻ يوجد ملخص باللغة العربية
Structural phase transitions described by Mexican hat potentials should in principle exhibit aspects of Higgs and Goldstone physics. Here, we investigate the relationship between the phonons that soften at such structural phase transitions and the Higgs- and Goldstone-boson analogues associated with the crystallographic Mexican hat potential. We show that, with the exception of systems containing only one atom type, the usual Higgs and Goldstone modes are represented by a combination of several phonon modes, with the lowest energy phonons of the relevant symmetry having substantial contribution. Taking the hexagonal manganites as a model system, we identify these modes using Landau theory, and predict the temperature dependence of their frequencies using parameters obtained from density functional theory. Separately, we calculate the additional temperature dependence of all phonon mode frequencies arising from thermal expansion within the quasi-harmonic approximation. We predict that Higgs-mode softening will dominate the low-frequency vibrational spectrum of InMnO$_3$ between zero kelvin and room-temperature, whereas the behavior of ErMnO$_3$ will be dominated by lattice expansion effects. We present temperature-dependent Raman scattering data that support our predictions, in particular confirming the existence of the Higgs mode in InMnO$_3$.
We study the low-energy excitations of the Bose-Hubbard model in the strongly-interacting superfluid phase using a Gutzwiller approach and extract the single-particle and single-hole excitation amplitudes for each mode. We report emergent mode-depend
The lattice dynamics of the $rm YMnO_3$ magneto-electric compound has been investigated using density functional calculations, both in the ferroelectric and the paraelectric phases. The coherence between the computed and experimental data is very goo
We show that the gauge-invariant kinetic equation of superconductivity provides an efficient approach to study the electromagnetic response of the gapless Nambu-Goldstone and gapful Higgs modes on an equal footing. We prove that the Fock energy in th
Using first-principles calculations we examine the band structures of ferromagnetic hexagonal manganites $mathrm{YXO_3}$ (X=V, Cr, Mn, Fe and Co) in the nonpolar nonsymmorphic $P6_3/mmc$ space group. For $mathrm{YVO_3}$ and $mathrm{YCrO_3}$ we find a
An incommensurate phase refers to a solid state in which the period of a superstructure is incommensurable with the primitive unit cell. Recently the incommensurate phase is induced by applying an in-plane strain to hexagonal manganites, which demons