ﻻ يوجد ملخص باللغة العربية
In this work we extend our formalism to study meson-baryon interactions by including $s$- and $u$-channel diagrams for pseudoscalar-baryon systems. We study the coupled systems with strangeness $-1$ and focus on studying the isospin-1 resonance(s), especially in the energy region around 1400 MeV. By constraining the model parameters to fit the cross section data available on several processes involving relevant channels, we find resonances in the isoscalar as well as the isovector sector in the energy region around 1400 MeV.
We consider meson-baryon interactions in S-wave with strangeness -1. This is a sector populated by plenty of resonances interacting in several two-body coupled channels. We consider a large set of experimental data, where the recent experiments are r
We consider meson-baryon interactions in S-wave with strangeness -1. This is a non-perturbative sector populated by plenty of resonances interacting in several two-body coupled channels.We study this sector combining a large set of experimental data.
The complete renormalization of the weak Lagrangian to chiral order q^2 in heavy baryon chiral perturbation theory is performed using heat kernel techniques. The results are compared with divergences appearing in the calculation of Feynman graphs for
We use a consistent SU(6) extension of the meson-baryon chiral Lagrangian within a coupled channel unitary approach in order to calculate the T-matrix for meson-baryon scattering in s-wave. The building blocks of the scheme are the pion and nucleon o
The meson-baryon interactions in s-wave in the strangeness S=-1 sector are studied using a chiral unitarity approach based on the next-to-leading order chiral SU(3) Lagrangian. The model is fitted to the large set of experimental data in different tw