ﻻ يوجد ملخص باللغة العربية
Following the discovery of blue large-amplitude pulsators (BLAPs) by the OGLE survey, additional hot, high-amplitude pulsating stars have been discovered by the Zwicky Transient Facility. It has been proposed that all of these objects are low-mass pre-white dwarfs and that their pulsations are driven by the opacity of iron-group elements. With this expanded population of pulsating objects, it was decided to compute a sequence of post-common-envelope stellar models using the MESA stellar evolution code and to examine the pulsation properties of low-mass pre-white dwarfs using non-adiabatic analysis with the GYRE stellar oscillation code. By including the effects of atomic diffusion and radiative levitation, it is shown that a large region of instability exists from effective temperatures of 30,000 K up to temperatures of at least 50,000 K and at a wide range of surface gravities. This encompasses both groups of pulsator observed so far, and confirms that the driving mechanism is through iron group element opacity. We make some conservative estimates about the range of periods, masses, temperatures and gravities in which further such pulsators might be observed.
We have detected asymmetry in the symbiotic star CH Cyg through the measurement of precision closure-phase with the IONIC beam combiner, at the IOTA interferometer. The position of the asymmetry changes with time and is correlated with the phase of t
We present a new set of nonlinear, convective radial pulsation models for main sequence stars computed assuming three metallicities: Z=0.0001, 0.001 and 0.008. These chemical compositions bracket the metallicity of stellar systems hosting SX Phoenici
The purpose of this paper is to explore a resolution for the Faint Young Sun Paradox that has been mostly rejected by the community, namely the possibility of a somewhat more massive young Sun with a large mass loss rate sustained for two to three bi
Asteroseismology is a powerful tool for probing the internal structures of stars by using their natural pulsation frequencies. It relies on identifying sequences of pulsation modes that can be compared with theoretical models, which has been done suc
We review the present-day methods of mode identification applied to main sequence pulsators focusing on those that make use of multicolour photometry and radial velocity data. The effects which may affect diagnostic properties of these observables ar