ﻻ يوجد ملخص باللغة العربية
We report on high-statistics data from the $beta^-$ decay of the $^{46}$K $J^{pi}$ = 2$^-$ ground state taken with the GRIFFIN spectrometer located at the TRIUMF-ISAC facility. In total, 199 $gamma$ rays and 42 excited states were placed in the level scheme, and from the observed $beta$ feeding and angular correlations of pairs of cascading $gamma$ rays, it was possible to assign spins and parities to excited states and determine mixing ratios for selected $gamma$ rays. The level structure of $^{46}$Ca is compared to theoretical predictions from a microscopic valence-space Hamiltonian derived from two- (NN) and three-nucleon (3N) forces. These calculations are in reasonable agreement with the experimental data and indicate that the protons in this region are not as inert as would be expected for semi-magic nuclei.
The Q_EC values of the superallowed beta+ emitters 10-C, 34-Ar, 38-Ca and 46-V have been measured with a Penning-trap mass spectrometer to be 3648.12(8), 6061.83(8), 6612.12(7) and 7052.44(10) keV, respectively. All four values are substantially improved in precision over previous results.
The $beta^-$ decay of $^{47}$K to $^{47}$Ca is an appropriate mechanism for benchmarking interactions spanning the $sd$ and $pf$ shells, but current knowledge of the $beta^-$-decay scheme is limited. We have performed a high-resolution, high-efficien
$^{48}$Ca, the lightest double beta decay candidate, is the only one simple enough to be treated exactly in the nuclear shell model. Thus, the $betabeta(2 u)$ half-life measurement, reported here, provides a unique test of the nuclear physics involve
In an experiment performed at the SPIRAL1 facility of GANIL, the beta decay of 32Ar has been studied by means of the Silicon Cube device associated with germanium clover detectors from the EXOGAM array. Beta-delayed protons and gamma rays have been o
Background: Beta-decay spectroscopy provides valuable nuclear physics input for thermonuclear reaction rates of astrophysical interest and stringent test for shell-model theories far from the stability line. Purpose: The available decay properties of