ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-body resonant states of $^9_{Lambda}$Be with $alpha +alpha +Lambda$ cluster model

89   0   0.0 ( 0 )
 نشر من قبل Qian Wu
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the structure of $^9_Lambda$Be in the framework of three body $alpha+alpha+Lambda$ cluster model using YNG-NF interaction with the Gaussian expansion method. Employing the complex scaling method, we obtain the energies of bound states as well as energies and decay widths of the resonant states. By analyzing our wave functions of bound states and resonant states, we confirm three analogue states of $^9_Lambda$Be pointed out by Band${rm bar{o}}$ and Motoba {it et al.} cite{motoba1983,motoba1985,bando1983}, $^8$Be analogue states, $^9_{Lambda}$Be genuine states and $^9$Be analogue states. The new states of $^9_Lambda$Be are also obtained at a high energy region with broader decay widths.



قيم البحث

اقرأ أيضاً

410 - Y. Funaki , T. Yamada , E. Hiyama 2014
New concept of clustering is discussed in $Lambda$ hypernuclei using a new-type microscopic cluster model wave function, which has a structure that constituent clusters are confined in a container, whose size is a variational parameter and which we r efer to as Hyper-Tohsaki-Horiuchi-Schuck-Ropke (Hyper-THSR) wave function. By using the Hyper-THSR wave function, $2alpha + Lambda$ cluster structure in ${^{9}_Lambda{rm Be}}$ is investigated. We show that full microscopic solutions in the $2alpha + Lambda$ cluster system, which are given as $2alpha + Lambda$ Brink-GCM wave functions, are almost perfectly reproduced by the single configurations of the Hyper-THSR wave function. The squared overlaps between the both wave functions are calculated to be $99.5$%, $99.4$%, and $97.7$% for $J^pi=0^+$, $2^+$, and $4^+$ states, respectively. We also simulate the structural change by adding the $Lambda$ particle, by varying the $Lambda N$ interaction artificially. As the increase of the $Lambda N$ interaction, the $Lambda$ particle gets to move more deeply inside the core and invokes strongly the spatial core shrinkage, and accordingly distinct localized $2alpha$ clusters appear in the nucleonic intrinsic density, though in ${^{8}{rm Be}}$ rather gaslike $2alpha$-cluster structure is shown. The origin of the localization is associated with the strong effect of Pauli principle. We conclude that the container picture of the $2alpha$ and $Lambda$ clusters is essential in understanding the cluster structure in ${^{9}_Lambda{rm Be}}$, in which the very compact spatial localization of clusters is shown in the density distribution.
100 - Y. Fujiwara 2004
We carry out Faddeev calculations of three-alpha (3 alpha) and two-alpha plus Lambda (alpha alpha Lambda) systems, using two-cluster resonating-group method kernels. The input includes an effective two-nucleon force for the alpha alpha resonating-gro up method and a new effective Lambda N force for the Lambda alpha interaction. The latter force is a simple two-range Gaussian potential for each spin-singlet and triplet state, generated from the phase-shift behavior of the quark-model hyperon-nucleon interaction, fss2, by using an inversion method based on supersymmetric quantum mechanics. Owing to the exact treatment of the Pauli-forbidden states between the clusters, the present three-cluster Faddeev formalism can describe the mutually related, alpha alpha, 3 alpha and alpha alpha Lambda systems, in terms of a unique set of the baryon-baryon interactions. For the three-range Minnesota force which describes the alpha alpha phase shifts quite accurately, the ground-state and excitation energies of 9Be Lambda are reproduced within 100 - 200 keV accuracy.
70 - Y. Fujiwara Kyoto 2006
We calculate Lambda alpha, Sigma alpha and Xi alpha potentials from the nuclear-matter G-matrices of the SU6 quark-model baryon-baryon interaction. The alpha-cluster wave function is assumed to be a simple harmonic-oscillator shell-model wave functio n. A new method is proposed to derive the direct and knock-on terms of the interaction Born kernel from the hyperon-nucleon G-matrices, with explicit treatments of the nonlocality and the center-of-mass motion between the hyperon and alpha. We find that the SU6 quark-model baryon-baryon interactions, FSS and fss2, yield a reasonable bound-state energy for 5 He Lambda, -3.18 -- -3.62 MeV, in spite of the fact that they give relatively large depths for the Lambda single-particle potentials, 46 -- 48 MeV, in symmetric nuclear matter. An equivalent local potential derived from the Wigner transform of the nonlocal Lambda alpha kernel shows a strong energy dependence for the incident Lambda-particle, indicating the importance of the strangeness-exchange process in the original hyperon-nucleon interaction. The Sigma alpha and Xi alpha potentials are repulsive with the attractive isospin I=1/2 (Sigma alpha) and I=0 (Xi alpha) components and the repulsive I=3/2 (Sigma alpha) and I=1 (Xi alpha) components.
A new full three-body method is introduced to compute the rate of the triple-alpha capture reaction which is the primary source of $^{12}$C in stars. In this work, we combine the Faddeev hyperspherical harmonics and the R-matrix method to obtain a fu ll solution to the three-body $alpha+alpha+alpha$ continuum. Particular attention is paid to the long range effects caused by the pairwise Coulomb interactions. The new rate agrees with the NACRE rate for temperatures greater than 0.07 GK, but a large enhancement at lower temperature is found ($approx 10^{14}$ at 0.02 GK). Our results are compared to previous calculations where additional approximations were made. We show that the new rate does not significantly change the evolution of stars around one solar mass. In particular, such stars still undergo a red-giant phase consistent with observations, and no significant differences are found in the final white dwarfs.
170 - Y. Fujiwara 2004
The previous Faddeev calculation of the two-alpha plus Lambda system for 9 Lambda Be is extended to incorporate the spin-orbit components of the SU_6 quark-model baryon-baryon interactions. We employ the Born kernel of the quark-model Lambda N LS int eraction, and generate the spin-orbit component of the Lambda alpha potential by the alpha-cluster folding. The Faddeev calculation in the jj-coupling scheme implies that the direct use of the quark-model Born kernel for the Lambda N LS component is not good enough to reproduce the small experimental value Delta E^exp_{ls}=43 +- 5 keV for the 5/2^+ - 3/2^+ splitting. This procedure predicts three to five times larger values in the model FSS and fss2. The spin-orbit contribution from the effective meson-exchange potentials in fss2 is argued to be unfavorable to the small ls splitting, through the analysis of the Scheerbaum factors for the single-particle spin-orbit potentials calculated in the G-matrix formalism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا