ﻻ يوجد ملخص باللغة العربية
The high temperature expansion is an analytical tool to study critical phenomena in statistical mechanics. We apply this method to 3d effective theories of Polyakov loops, which have been derived from 4d lattice Yang-Mills by means of resummed strong coupling expansions. In particular, the Polyakov loop susceptibility is computed as a power series in the effective couplings. A Pade analysis then provides the location of the phase transition in the effective theory, which can be mapped back to the parameters of 4d Yang-Mills. Our purely analytical results for the critical couplings $beta_c(N_tau)$ agree to better than $10%$ with those from Monte Carlo simulations. For the case of $SU(2)$, also the critical exponent $gamma$ is predicted accurately, while a first-order nature as for $SU(3)$ cannot be identified by a Pade analysis. The method can be generalized to include fermions and finite density.
Euclidean strong coupling expansion of the partition function is applied to lattice Yang-Mills theory at finite temperature, i.e. for lattices with a compactified temporal direction. The expansions have a finite radius of convergence and thus are val
We study the machine learning techniques applied to the lattice gauge theorys critical behavior, particularly to the confinement/deconfinement phase transition in the SU(2) and SU(3) gauge theories. We find that the neural network, trained on lattice
The correlations between the modulus of the Polyakov loop, its phase $theta$ and the Landau gauge gluon propagator at finite temperature are investigated in connection with the center symmetry for pure Yang-Mills SU(3) theory. In the deconfined phase
Fermion boundary conditions play a relevant role in revealing the confinement mechanism of N=1 supersymmetric Yang-Mills theory with one compactified space-time dimension. A deconfinement phase transition occurs for a sufficiently small compactificat
In this paper, we provide a thorough study on the expansion of single trace Einstein-Yang-Mills amplitudes into linear combination of color-ordered Yang-Mills amplitudes, from various different perspectives. Using the gauge invariance principle, we p