ﻻ يوجد ملخص باللغة العربية
We propose and validate a method of anti-neutrino energy reconstruction for charged-current meson-less interactions on composite fully active targets containing hydrogen (such as hydrocarbon scintillator), which is largely free of the poorly understood nuclear effects that usually distort and bias attempts to measure neutrino energy. The method is based on the precise event-by-event measurement of the outgoing neutron kinetic energy and the subsequent assessment of the momentum imbalance on the plane transverse to the incoming anti-neutrino direction. For an anti-neutrino flux peaked at around 600 MeV measured using a finely grained $2times2times2$ m$^3$ 3D scintillator tracker the neutrino energy resolution is expected to be around 7%, compared to the 15% expected using traditional neutrino energy reconstruction techniques. Analogous results can be obtained for other detectors with similar characteristics.
Liquid scintillators are commonly used to detect low energy neutrinos from the reactors, sun, and earth. It is a challenge to reconstruct deposited energies for a large liquid scintillator detector. For detectors with multiple optical mediums such as
We present a new experimental method for measuring the process of Coherent Elastic Neutrino Nucleus Scattering (CENNS). This method uses a detector situated transverse to a high energy neutrino beam production target. This detector would be sensitive
The SoLid collaboration have developed an intelligent readout system to reduce their 3200 silicon photomultiplier detectors data rate by a factor of 10000 whilst maintaining high efficiency for storing data from anti-neutrino interactions. The system
The large next generation liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) offers an excellent opportunity for neutrino oscillometry. The characteristic spatial pattern of very low monoenergetic neutrino disappearance from artificial
Neutrinos are particles that interact rarely, so identifying them requires large detectors which produce lots of data. Processing this data with the computing power available is becoming more difficult as the detectors increase in size to reach their