ﻻ يوجد ملخص باللغة العربية
Fully superconducting machines provide the high power density required for future electric aircraft propulsion. However, superconducting windings generate AC losses in AC electrical machine environments. These AC losses are difficult to remove at low temperatures and they add an extra burden to the aircraft cooling system. Due to heavy cooling penalty, AC losses in the HTS stator, is one of the key topics in HTS machine design. In order to evaluate the AC loss of superconducting stator windings in a rotational machine environment, we designed and built a novel axial-flux high temperature superconducting (HTS) machine platform. The AC loss measurement is based on calorimetrically boiling-off liquid nitrogen. Both total AC loss and magnetisation loss in HTS stator are measured in a rotational magnetic field condition. This platform is essential to study ways to minimise AC losses in HTS stator, in order to maximum the efficiency of fully HTS machines.
Electric machines with very power-to-weight ratios are inevitable for hybrid electric aircraft applications. One potential technology that is very promising to achieve the required power-to-weight ratio for short-range aircraft, are superconductors u
The use of high-temperature superconductors in electric machines offers potentially large gains in performance compared to conventional conductors, but also comes with unique challenges. Here, the electromagnetic properties of superconducting electri
We critically review our recent claims that it is possible to obtain a propellantless propulsion device similar to electrodynamic tethers by means of a closed wire partially shielded by a superconductor from the outer magnetic field. We find that suc
The hysteretic ac loss of a current-carrying conductor in which multiple superconducting strips are polygonally arranged around a cylindrical former is theoretically investigated as a model of superconducting cables. Using the critical state model, w
Challenging space missions include those at very low altitudes, where the atmosphere is source of aerodynamic drag on the spacecraft. To extend the lifetime of such missions, an efficient propulsion system is required. One solution is Atmosphere-Brea