ترغب بنشر مسار تعليمي؟ اضغط هنا

On the excess charge of a relativistic statistical model of molecules with an inhomogeneity correction

83   0   0.0 ( 0 )
 نشر من قبل Hongshuo Chen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the molecular relativistic Thomas-Fermi-Weizsacker functional consisting of atoms of atomic numbers $Z_1,...,Z_k$ has a minimizer, if the particle number $N$ is constrained to a number less or equal to the total nuclear charge $Z:=Z_1+...+Z_K$. Moreover, there is no minimizer, if the particle number exceeds $2.56 Z$. This gives lower and upper bounds on the maximal ionization of heavy atoms.



قيم البحث

اقرأ أيضاً

An interesting and satisfactory fluid model has been proposed in literature for the the description of relativistic electron beams. It was obtained with 14 independent variables by imposing the entropy principle and the relativity principle. Here the case is considered with an arbitrary number of independent variables, still satisfying the above mentioned two principles; these lead to conditions whose general solution is here found. We think that the results satisfy also a certain ordering with respect to a smallness parameter $epsilon$ measuring the dispersion of the velocity about the mean; this ordering generalizes that appearing in literature for the 14 moments case.
We introduce a global thermostat on Kacs 1D model for the velocities of particles in a space-homogeneous gas subjected to binary collisions, also interacting with a (local) Maxwellian thermostat. The global thermostat rescales the velocities of all t he particles, thus restoring the total energy of the system, which leads to an additional drift term in the corresponding nonlinear kinetic equation. We prove ergodicity for this equation, and show that its equilibrium distribution has a density that, depending on the parameters of the model, can exhibit heavy tails, and whose behaviour at the origin can range from being analytic, to being $C^k$, and even to blowing-up. Finally, we prove propagation of chaos for the associated $N$-particle system, with a uniform-in-time rate of order $N^{-eta}$ in the squared $2$-Wasserstein metric, for an explicit $eta in (0, 1/3]$.
The Landauer principle asserts that the energy cost of erasure of one bit of information by the action of a thermal reservoir in equilibrium at temperature T is never less than $kTlog 2$. We discuss Landauers principle for quantum statistical models describing a finite level quantum system S coupled to an infinitely extended thermal reservoir R. Using Arakis perturbation theory of KMS states and the Avron-Elgart adiabatic theorem we prove, under a natural ergodicity assumption on the joint system S+R, that Landauers bound saturates for adiabatically switched interactions. The recent work of Reeb and Wolf on the subject is discussed and compared.
Extended Thermodynamics is a very important theory: for example, it predicts hyperbolicity, finite speeds of propagation waves as well as continuous dependence on initial data. Therefore, it constitutes a significative improvement of ordinary thermod ynamics. Here its methods are applied to the case of an arbitrary, but fixed, number of moments. The kinetic approach has already been developed in literature; then, the macroscopic approach is here considered and the constitutive functions appearing in the balance equations are determined up to whatever order with respect to thermodynamical equilibrium. The results of the kinetic approach are a particular case of the present ones.
567 - Laurent Amour 2008
We consider a non-relativistic electron interacting with a classical magnetic field pointing along the $x_3$-axis and with a quantized electromagnetic field. The system is translation invariant in the $x_3$-direction and we consider the reduced Hamil tonian $H(P_3)$ associated with the total momentum $P_3$ along the $x_3$-axis. For a fixed momentum $P_3$ sufficiently small, we prove that $H(P_3)$ has a ground state in the Fock representation if and only if $E(P_3)=0$, where $P_3 mapsto E(P_3)$ is the derivative of the map $P_3 mapsto E(P_3) = inf sigma (H(P_3))$. If $E(P_3) eq 0$, we obtain the existence of a ground state in a non-Fock representation. This result holds for sufficiently small values of the coupling constant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا