ﻻ يوجد ملخص باللغة العربية
Direct scattering transform of nonlinear wave fields with solitons may lead to anomalous numerical errors of soliton phase and position parameters. With the focusing one-dimensional nonlinear Schrodinger equation serving as a model, we investigate this fundamental issue theoretically. Using the dressing method we find the landscape of soliton scattering coefficients in the plane of the complex spectral parameter for multi-soliton wave fields truncated within a finite domain, allowing us to capture the nature of particular numerical errors. They depend on the size of the computational domain $L$ leading to a counterintuitive exponential divergence when increasing $L$ in the presence of a small uncertainty in soliton eigenvalues. In contrast to classical textbooks, we reveal how one of the scattering coefficients loses its analytical properties due to the lack of the wave field compact support in case of $L to infty$. Finally, we demonstrate that despite this inherit direct scattering transform feature, the wave fields of arbitrary complexity can be reliably analysed.
With more than 500 million daily tweets from over 330 million active users, Twitter constantly attracts malicious users aiming to carry out phishing and malware-related attacks against its user base. It therefore becomes of paramount importance to as
We report that Ly$alpha$-emitting galaxies (LAEs) may not faithfully trace the cosmic web of neutral hydrogen (HI), but their distribution is likely biased depending on the viewing direction. We calculate the cross-correlation (CCF) between galaxies
We consider the issue of strategic behaviour in various peer-assessment tasks, including peer grading of exams or homeworks and peer review in hiring or promotions. When a peer-assessment task is competitive (e.g., when students are graded on a curve
Neural predictive models have achieved remarkable performance improvements in various natural language processing tasks. However, most neural predictive models suffer from the lack of explainability of predictions, limiting their practical utility. T
Since the popularization of the Transformer as a general-purpose feature encoder for NLP, many studies have attempted to decode linguistic structure from its novel multi-head attention mechanism. However, much of such work focused almost exclusively