ترغب بنشر مسار تعليمي؟ اضغط هنا

ReLeTA: Reinforcement Learning for Thermal-Aware Task Allocation on Multicore

223   0   0.0 ( 0 )
 نشر من قبل Di Liu
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose textit{ReLeTA}: Reinforcement Learning based Task Allocation for temperature minimization. We design a new reward function and use a new state model to facilitate optimization of reinforcement learning algorithm. By means of the new reward function and state model, releta is able to effectively reduce the system peak temperature without compromising the application performance. We implement and evaluate releta on a real platform in comparison with the state-of-the-art approaches. Experimental results show releta can reduce the average peak temperature by 4 $^{circ}$C and the maximum difference is up to 13 $^{circ}$C.



قيم البحث

اقرأ أيضاً

The effective allocation of cross-border trading capacities is one of the central challenges in implementation of a pan-European internal energy market. Flow-based market coupling has shown promising results for to achieve better price convergence be tween market areas, while, at the same time, improving congestion management effectiveness by explicitly internalizing power flows on critical network elements in the capacity allocation routine. However, the question of FBMC effectiveness for a future power system with a very high share of intermittent renewable generation is often overlooked in the current literature. This paper provides a comprehensive summary on FBMC modeling assumptions, discusses implications of external policy considerations and explicitly discusses the impact of high-shares of intermittent generation on the effectiveness of FBMC as a method of capacity allocation and congestion management in zonal electricity markets. We propose to use an RES uncertainty model and probabilistic security margins on the FBMC parameterization to effectively assess the impact of forecast errors in renewable dominant power systems. Numerical experiments on the well-studied IEEE 118 bus test system demonstrate the mechanics of the studied FBMC simulation. Our data and implementation are published through the open-source power market tool POMATO.
85 - Han Hu , Weiwei Song , Qun Wang 2021
Mobile edge computing (MEC)-enabled Internet of Things (IoT) networks have been deemed a promising paradigm to support massive energy-constrained and computation-limited IoT devices. IoT with mobility has found tremendous new services in the 5G era a nd the forthcoming 6G eras such as autonomous driving and vehicular communications. However, mobility of IoT devices has not been studied in the sufficient level in the existing works. In this paper, the offloading decision and resource allocation problem is studied with mobility consideration. The long-term average sum service cost of all the mobile IoT devices (MIDs) is minimized by jointly optimizing the CPU-cycle frequencies, the transmit power, and the user association vector of MIDs. An online mobility-aware offloading and resource allocation (OMORA) algorithm is proposed based on Lyapunov optimization and Semi-Definite Programming (SDP). Simulation results demonstrate that our proposed scheme can balance the system service cost and the delay performance, and outperforms other offloading benchmark methods in terms of the system service cost.
In the context of heterogeneous multi-robot teams deployed for executing multiple tasks, this paper develops an energy-aware framework for allocating tasks to robots in an online fashion. With a primary focus on long-duration autonomy applications, w e opt for a survivability-focused approach. Towards this end, the task prioritization and execution -- through which the allocation of tasks to robots is effectively realized -- are encoded as constraints within an optimization problem aimed at minimizing the energy consumed by the robots at each point in time. In this context, an allocation is interpreted as a prioritization of a task over all others by each of the robots. Furthermore, we present a novel framework to represent the heterogeneous capabilities of the robots, by distinguishing between the features available on the robots, and the capabilities enabled by these features. By embedding these descriptions within the optimization problem, we make the framework resilient to situations where environmental conditions make certain features unsuitable to support a capability and when component failures on the robots occur. We demonstrate the efficacy and resilience of the proposed approach in a variety of use-case scenarios, consisting of simulations and real robot experiments.
Despite recent success of deep network-based Reinforcement Learning (RL), it remains elusive to achieve human-level efficiency in learning novel tasks. While previous efforts attempt to address this challenge using meta-learning strategies, they typi cally suffer from sampling inefficiency with on-policy RL algorithms or meta-overfitting with off-policy learning. In this work, we propose a novel meta-RL strategy to address those limitations. In particular, we decompose the meta-RL problem into three sub-tasks, task-exploration, task-inference and task-fulfillment, instantiated with two deep network agents and a task encoder. During meta-training, our method learns a task-conditioned actor network for task-fulfillment, an explorer network with a self-supervised reward shaping that encourages task-informative experiences in task-exploration, and a context-aware graph-based task encoder for task inference. We validate our approach with extensive experiments on several public benchmarks and the results show that our algorithm effectively performs exploration for task inference, improves sample efficiency during both training and testing, and mitigates the meta-overfitting problem.
This paper investigates the problem of age of information (AoI) aware radio resource management for a platooning system. Multiple autonomous platoons exploit the cellular wireless vehicle-to-everything (C-V2X) communication technology to disseminate the cooperative awareness messages (CAMs) to their followers while ensuring timely delivery of safety-critical messages to the Road-Side Unit (RSU). Due to the challenges of dynamic channel conditions, centralized resource management schemes that require global information are inefficient and lead to large signaling overheads. Hence, we exploit a distributed resource allocation framework based on multi-agent reinforcement learning (MARL), where each platoon leader (PL) acts as an agent and interacts with the environment to learn its optimal policy. Existing MARL algorithms consider a holistic reward function for the groups collective success, which often ends up with unsatisfactory results and cannot guarantee an optimal policy for each agent. Consequently, motivated by the existing literature in RL, we propose a novel MARL framework that trains two critics with the following goals: A global critic which estimates the global expected reward and motivates the agents toward a cooperating behavior and an exclusive local critic for each agent that estimates the local individual reward. Furthermore, based on the tasks each agent has to accomplish, the individual reward of each agent is decomposed into multiple sub-reward functions where task-wise value functions are learned separately. Numerical results indicate our proposed algorithms effectiveness compared with the conventional RL methods applied in this area.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا