ﻻ يوجد ملخص باللغة العربية
Dark matter can capture in neutron stars and heat them to observable luminosities. We study relativistic scattering of dark matter on highly degenerate electrons. We develop a Lorentz invariant formalism to calculate the capture probability of dark matter that accounts for the relativistic motion of the target particles and Pauli exclusion principle. We find that the actual capture probability can be five orders of magnitude larger than the one estimated using a nonrelativistic approach. For dark matter masses $10~{rm eV}textup{--}10~{rm PeV}$, neutron star heating complements and can be more sensitive than terrestrial direct detection searches. The projected sensitivity regions exhibit characteristic features that demonstrate a rich interplay between kinematics and Pauli blocking of the DM--electron system. Our results show that old neutron stars could be the most promising target for discovering leptophilic dark matter.
We calculate the number of dark matter particles that a neutron star accumulates over its lifetime as it rotates around the center of a galaxy, when the dark matter particle is a self-interacting boson but does not self-annihilate. We take into accou
We discuss the issue on dark matter capture by neutron stars, in particular the process of dark matter thermalization, by which the scattering cross section and the mass of dark matter can be constrained. At first, we evaluate the thermalization time
Neutron stars harbour matter under extreme conditions, providing a unique testing ground for fundamental interactions. We recently developed an improved treatment of dark matter (DM) capture in neutron stars that properly incorporates many of the imp
We outline two important effects that are missing from most evaluations of the dark matter capture rate in neutron stars. As dark matter scattering with nucleons in the star involves large momentum transfer, nucleon structure must be taken into accou
A promising probe to unmask particle dark matter is to observe its effect on neutron stars, the prospects of which depend critically on whether captured dark matter thermalizes in a timely manner with the stellar core via repeated scattering with the