ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic capture of dark matter by electrons in neutron stars

140   0   0.0 ( 0 )
 نشر من قبل Aniket Joglekar
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dark matter can capture in neutron stars and heat them to observable luminosities. We study relativistic scattering of dark matter on highly degenerate electrons. We develop a Lorentz invariant formalism to calculate the capture probability of dark matter that accounts for the relativistic motion of the target particles and Pauli exclusion principle. We find that the actual capture probability can be five orders of magnitude larger than the one estimated using a nonrelativistic approach. For dark matter masses $10~{rm eV}textup{--}10~{rm PeV}$, neutron star heating complements and can be more sensitive than terrestrial direct detection searches. The projected sensitivity regions exhibit characteristic features that demonstrate a rich interplay between kinematics and Pauli blocking of the DM--electron system. Our results show that old neutron stars could be the most promising target for discovering leptophilic dark matter.



قيم البحث

اقرأ أيضاً

We calculate the number of dark matter particles that a neutron star accumulates over its lifetime as it rotates around the center of a galaxy, when the dark matter particle is a self-interacting boson but does not self-annihilate. We take into accou nt dark matter interactions with baryonic matter and the time evolution of the dark matter sphere as it collapses within the neutron star. We show that dark matter self-interactions play an important role in the rapid accumulation of dark matter in the core of the neutron star. We consider the possibility of determining an exclusion region of the parameter space for dark matter mass and dark matter interaction cross sections based on the observation of old neutron stars with strong dark matter self-interactions. We show that for a dark matter density of $~10^3$ GeV/cm$^3$ and dark matter mass $m_chi$ less than approximately 10 GeV, there is a potential exclusion region for dark matter interactions with nucleons that is three orders of magnitude more stringent than without self-interactions. The potential exclusion region for dark matter self-interaction cross sections is many orders of magnitude stronger than the current Bullet Cluster limit. For example, for high dark matter density regions, we find that for $m_chisim 10$ GeV when the dark matter interaction cross section with the nucleons ranges from $sigma_{chi n}sim 10^{-52}$ cm$^2$ to $10^{-57}$ cm$^2$, the dark matter self-interaction cross section limit is $sigma_{chichi}< 10^{-33}$ cm$^2$, which is about ten orders of magnitude stronger than the Bullet Cluster limit.
We discuss the issue on dark matter capture by neutron stars, in particular the process of dark matter thermalization, by which the scattering cross section and the mass of dark matter can be constrained. At first, we evaluate the thermalization time of self-interacting dark matter and find the effect of the self-interaction is small compared with that of the interaction with nucleons. Then we generalize the thermalization time by introducing a set of new parameters. We show how the cross section is affected by those new parameters. It turns out that the cross section gets very sensitive to and strongly constrained by one of the new parameters.
Neutron stars harbour matter under extreme conditions, providing a unique testing ground for fundamental interactions. We recently developed an improved treatment of dark matter (DM) capture in neutron stars that properly incorporates many of the imp ortant physical effects, and outlined useful analytic approximations that are valid when the scattering amplitude is independent of the centre of mass energy. We now extend that analysis to all interaction types. We also discuss the effect of going beyond the zero-temperature approximation, which provides a boost to the capture rate of low mass dark matter, and give approximations for the dark matter up-scattering rate and evaporation mass. We apply these results to scattering of dark matter from leptonic targets, for which a correct relativistic description is essential. We find that the potential neutron star sensitivity to DM-lepton scattering cross sections greatly exceeds electron-recoil experiments, particularly in the sub-GeV regime, with a sensitivity to sub-MeV DM well beyond the reach of future terrestrial experiments.
We outline two important effects that are missing from most evaluations of the dark matter capture rate in neutron stars. As dark matter scattering with nucleons in the star involves large momentum transfer, nucleon structure must be taken into accou nt via a momentum dependence of the hadronic form factors. In addition, due to the high density of neutron star matter, we should account for nucleon interactions rather than modeling the nucleons as an ideal Fermi gas. Properly incorporating these effects is found to suppress the dark matter capture rate by up to three orders of magnitude for the heaviest stars.
A promising probe to unmask particle dark matter is to observe its effect on neutron stars, the prospects of which depend critically on whether captured dark matter thermalizes in a timely manner with the stellar core via repeated scattering with the Fermi-degenerate medium. In this work we estimate the timescales for thermalization for multiple scenarios. These include: (a) spin-0 and spin-$frac{1}{2}$ dark matter, (b) scattering on non-relativistic neutron and relativistic electron targets accounting for the respective kinematics, (c) interactions via a range of Lorentz-invariant structures, (d) mediators both heavy and light in comparison to the typical transfer momenta in the problem. We discuss the analytic behavior of the thermalization time as a function of the dark matter and mediator masses, and the stellar temperature. Finally, we identify parametric ranges where both stellar capture is efficient and thermalization occurs within the age of the universe. For dark matter that can annihilate in the core, these regions indicate parametric ranges that can be probed by upcoming infrared telescopes observing cold neutron stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا