ترغب بنشر مسار تعليمي؟ اضغط هنا

Abnormal source identification for parabolic distributed parameter systems

51   0   0.0 ( 0 )
 نشر من قبل Yun Feng
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Identification of abnormal source hidden in distributed parameter systems (DPSs) belongs to the category of inverse source problems. It is important in industrial applications but seldom studied. In this paper, we make the first attempt to investigate the abnormal spatio-temporal (S-T) source identification for a class of DPSs. An inverse S-T model for abnormal source identification is developed for the first time. It consists of an adaptive state observer for source identification and an adaptive source estimation algorithm. One major advantage of the proposed inverse S-T model is that only the system output is utilized, without any state measurement. Theoretic analysis is conducted to guarantee the convergence of the estimation error. Finally, the performance of the proposed method is evaluated on a heat transfer rod with an abnormal S-T source.



قيم البحث

اقرأ أيضاً

135 - Vahid Rezaei 2021
A graph theoretic framework recently has been proposed to stabilize interconnected multiagent systems in a distributed fashion, while systematically capturing the architectural aspect of cyber-physical systems with separate agent or physical layer an d control or cyber layer. Based on that development, in addition to the modeling uncertainties over the agent layer, we consider a scenario where the control layer is subject to the denial of service attacks. We propose a step-by-step procedure to design a control layer that, in the presence of the aforementioned abnormalities, guarantees a level of robustness and resiliency for the final two-layer interconnected multiagent system. The incorporation of an event-triggered strategy further ensures an effective use of the limited energy and communication resources over the control layer. We theoretically prove the resilient, robust, and Zeno-free convergence of all state trajectories to the origin and, via a simulation study, discuss the feasibility of the proposed ideas.
Active learning is proposed for selection of the next operating points in the design of experiments, for identifying linear parameter-varying systems. We extend existing approaches found in literature to multiple-input multiple-output systems with a multivariate scheduling parameter. Our approach is based on exploiting the probabilistic features of Gaussian process regression to quantify the overall model uncertainty across locally identified models. This results in a flexible framework which accommodates for various techniques to be applied for estimation of local linear models and their corresponding uncertainty. We perform active learning in application to the identification of a diesel engine air-path model, and demonstrate that measures of model uncertainty can be successfully reduced using the proposed framework.
Parameter estimation is of foundational importance for various model-based battery management tasks, including charging control, state-of-charge estimation and aging assessment. However, it remains a challenging issue as the existing methods generall y depend on cumbersome and time-consuming procedures to extract battery parameters from data. Departing from the literature, this paper sets the unique aim of identifying all the parameters offline in a one-shot procedure, including the resistance and capacitance parameters and the parameters in the parameterized function mapping from the state-of-charge to the open-circuit voltage. Considering the well-known Thevenins battery model, the study begins with the parameter identifiability analysis, showing that all the parameters are locally identifiable. Then, it formulates the parameter identification problem in a prediction-error-minimization framework. As the non-convexity intrinsic to the problem may lead to physically meaningless estimates, two methods are developed to overcome this issue. The first one is to constrain the parameter search within a reasonable space by setting parameter bounds, and the other adopts regularization of the cost function using prior parameter guess. The proposed identifiability analysis and identification methods are extensively validated through simulations and experiments.
This work studies how to estimate the mean-field density of large-scale systems in a distributed manner. Such problems are motivated by the recent swarm control technique that uses mean-field approximations to represent the collective effect of the s warm, wherein the mean-field density (and its gradient) is usually used in feedback control design. In the first part, we formulate the density estimation problem as a filtering problem of the associated mean-field partial differential equation (PDE), for which we employ kernel density estimation (KDE) to construct noisy observations and use filtering theory of PDE systems to design an optimal (centralized) density filter. It turns out that the covariance operator of observation noise depends on the unknown density. Hence, we use approximations for the covariance operator to obtain a suboptimal density filter, and prove that both the density estimates and their gradient are convergent and remain close to the optimal one using the notion of input-to-state stability (ISS). In the second part, we continue to study how to decentralize the density filter such that each agent can estimate the mean-field density based on only its own position and local information exchange with neighbors. We prove that the local density filter is also convergent and remains close to the centralized one in the sense of ISS. Simulation results suggest that the (centralized) suboptimal density filter is able to generate convergent density estimates, and the local density filter is able to converge and remain close to the centralized filter.
74 - Tongjia Zheng , Hai Lin 2020
This work studies distributed (probability) density estimation of large-scale systems. Such problems are motivated by many density-based distributed control tasks in which the real-time density of the swarm is used as feedback information, such as se nsor deployment and city traffic scheduling. This work is built upon our previous work [1] which presented a (centralized) density filter to estimate the dynamic density of large-scale systems through a novel integration of mean-field models, kernel density estimation (KDE), and infinite-dimensional Kalman filters. In this work, we further study how to decentralize the density filter such that each agent can estimate the global density only based on its local observation and communication with neighbors. This is achieved by noting that the global observation constructed by KDE is an average of the local kernels. Hence, dynamic average consensus algorithms are used for each agent to track the global observation in a distributed way. We present a distributed density filter which requires very little information exchange, and study its stability and optimality using the notion of input-to-state stability. Simulation results suggest that the distributed filter is able to converge to the centralized filter and remain close to it.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا