ترغب بنشر مسار تعليمي؟ اضغط هنا

Onset of a skyrmion phase by chemical substitution in MnGe chiral magnet

258   0   0.0 ( 0 )
 نشر من قبل Evgenii Altynbaev Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the evolution of the magnetic phase diagram of Mn$_{1-x}$Fe$_{x}$Ge alloys with concentration $x$ ($0 leq x leq 0.3$) by small-angle neutron scattering. We unambiguously observe the absence of a skyrmion lattice (or A-phase) in bulk MnGe and its onset under a small Mn/Fe substitution. The A-phase is there endowed with an exceptional skyrmion density, and is stabilized within a very large temperature region and a field range which scales with the Fe concentration. Our findings highlight the possibility to fine-tune properties of skyrmion lattices by means of chemical doping.



قيم البحث

اقرأ أيضاً

Magnetic skyrmions are vortex-like topological spin textures often observed to form a triangular-lattice skyrmion crystal in structurally chiral magnets with Dzyaloshinskii-Moriya interaction. Recently $beta$-Mn structure-type Co-Zn-Mn alloys were id entified as a new class of chiral magnet to host such skyrmion crystal phases, while $beta$-Mn itself is known as hosting an elemental geometrically frustrated spin liquid. Here we report the intermediate composition system Co$_7$Zn$_7$Mn$_6$ to be a unique host of two disconnected, thermal-equilibrium topological skyrmion phases; one is a conventional skyrmion crystal phase stabilized by thermal fluctuations and restricted to exist just below the magnetic transition temperature $T_mathrm{c}$, and the other is a novel three-dimensionally disordered skyrmion phase that is stable well below $T_mathrm{c}$. The stability of this new disordered skyrmion phase is due to a cooperative interplay between the chiral magnetism with Dzyaloshinskii-Moriya interaction and the frustrated magnetism inherent to $beta$-Mn.
Skyrmions represent topologically stable field configurations with particle-like properties. We used neutron scattering to observe the spontaneous formation of a two-dimensional lattice of skyrmion lines, a type of magnetic vortices, in the chiral it inerant-electron magnet MnSi. The skyrmion lattice stabilizes at the border between paramagnetism and long-range helimagnetic order perpendicular to a small applied magnetic field regardless of the direction of the magnetic field relative to the atomic lattice. Our study experimentally establishes magnetic materials lacking inversion symmetry as an arena for new forms of crystalline order composed of topologically stable spin states.
The cubic chiral helimagnets with the $P2_13$ space group represent a group of compounds in which the stable skyrmion-lattice state is experimentally observed. The key parameter that controls the energy landscape of such systems and determines the em ergence of a topologically nontrivial magnetic structures is the Dzyaloshinskii-Moriya interaction (DMI). Chemical substitution is recognized as a convenient instrument to tune the DMI in real materials and has been successfully utilized in studies of a number of chiral magnets, such as MnSi, FeGe, MnGe, and others. In our study, we applied small-angle neutron scattering to investigate how chemical substitution influences the skyrmionic properties of an insulating helimagnet Cu$_2$OSeO$_3$ when Cu ions are replaced by either Zn or Ni. Our results demonstrate that the DMI is enhanced in the Ni-substituted compounds (Cu,Ni)$_2$OSeO$_3$, but weakened in (Cu,Zn)$_2$OSeO$_3$. The observed changes in the DMI strength are reflected in the magnitude of the spin-spiral propagation vector and the temperature stability of the skyrmion phase.
We report that in a $beta$-Mn-type chiral magnet Co$_9$Zn$_9$Mn$_2$, skyrmions are realized as a metastable state over a wide temperature range, including room temperature, via field-cooling through the thermodynamic equilibrium skyrmion phase that e xists below a transition temperature $T_mathrm{c}$ $sim$ 400 K. The once-created metastable skyrmions survive at zero magnetic field both at and above room temperature. Such robust skyrmions in a wide temperature and magnetic field region demonstrate the key role of topology, and provide a significant step toward technological applications of skyrmions in bulk chiral magnets.
Magnetic skyrmions have been the focus of intense research due to their unique qualities which result from their topological protections. Previous work on Cu$_2$OSeO$_3$, the only known insulating multiferroic skyrmion material, has shown that chemic al substitution alters the skyrmion phase. We chemically substitute Zn, Ag, and S into powdered Cu$_2$OSeO$_3$ to study the effect on the magnetic phase diagram. In both the Ag and the S substitutions, we find that the skyrmion phase is stabilized over a larger temperature range, as determined via magnetometry and small-angle neutron scattering (SANS). Meanwhile, while previous magnetometry characterization suggests two high temperature skyrmion phases in the Zn-substituted sample, SANS reveals the high temperature phase to be skyrmionic while we are unable to distinguish the other from helical order. Overall, chemical substitution weakens helical and skyrmion order as inferred from neutron scattering of the $|$q$| approx$ 0.01 $r{A}^{-1}$ magnetic peak.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا