ترغب بنشر مسار تعليمي؟ اضغط هنا

Imaging the 44 AU Kuiper Belt-analogue debris ring around HD 141569A with GPI polarimetry

500   0   0.0 ( 0 )
 نشر من قبل Stanimir A. Metchev
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first polarimetric detection of the inner disk component around the pre-main sequence B9.5 star HD 141569A. Gemini Planet Imager H-band (1.65 micron) polarimetric differential imaging reveals the highest signal-to-noise ratio detection of this ring yet attained and traces structure inwards to 0.25 (28 AU at a distance of 111 pc). The radial polarized intensity image shows the east side of the disk, peaking in intensity at 0.40 (44 AU) and extending out to 0.9 (100 AU). There is a spiral arm-like enhancement to the south, reminiscent of the known spiral structures on the outer rings of the disk. The location of the spiral arm is coincident with 12CO J=3-2 emission detected by ALMA, and hints at a dynamically active inner circumstellar region. Our observations also show a portion of the middle dusty ring at ~220 AU known from previous observations of this system. We fit the polarized H-band emission with a continuum radiative transfer Mie model. Our best-fit model favors an optically thin disk with a minimum dust grain size close to the blow-out size for this system: evidence of on-going dust production in the inner reaches of the disk. The thermal emission from this model accounts for virtually all of the far-infrared and millimeter flux from the entire HD 141569A disk, in agreement with the lack of ALMA continuum and CO emission beyond ~100 AU. A remaining 8-30 micron thermal excess a factor of ~2 above our model argues for a yet-unresolved warm innermost 5-15 AU component of the disk.



قيم البحث

اقرأ أيضاً

We have obtained Gemini Planet Imager (GPI) J-, H-, K1-, and K2-Spec observations of the iconic debris ring around the young, main-sequence star HR 4796A. We applied several point-spread function (PSF) subtraction techniques to the observations (Mask -and-Interpolate, RDI-NMF, RDI-KLIP, and ADI-KLIP) to measure the geometric parameters and the scattering phase function for the disk. To understand the systematic errors associated with PSF subtraction, we also forward-modeled the observations using a Markov Chain Monte Carlo framework and a simple model for the disk. We found that measurements of the disk geometric parameters were robust, with all of our analyses yielding consistent results; however, measurements of the scattering phase function were challenging to reconstruct from PSF-subtracted images, despite extensive testing. As a result, we estimated the scattering phase function using disk modeling. We searched for a dependence of the scattering phase function with respect to the GPI filters but found none. We compared the H-band scattering phase function with that measured by Hubble Space Telescope STIS at visual wavelengths and discovered a blue color at small scattering angles and a red color at large scattering angles, consistent with predictions and laboratory measurements of large grains. Finally, we successfully modeled the SPHERE H2 HR 4796A scattered phase function using a distribution of hollow spheres composed of silicates, carbon, and metallic iron.
Photometry of the A0 V main-sequence star HD 106797 with AKARI and Gemini/T-ReCS is used to detect excess emission over the expected stellar photospheric emission between 10 and 20 micron, which is best attributed to hot circumstellar debris dust sur rounding the star. The temperature of the debris dust is derived as Td ~ 190 K by assuming that the excess emission is approximated by a single temperature blackbody. The derived temperature suggests that the inner radius of the debris disk is ~ 14 AU. The fractional luminosity of the debris disk is 1000 times brighter than that of our own zodiacal cloud. The existence of such a large amount of hot dust around HD 106797 cannot be accounted for by a simple model of the steady state evolution of a debris disk due to collisions, and it is likely that transient events play a significant role. Our data also show a narrow spectral feature between 11 and 12 micron attributable to crystalline silicates, suggesting that dust heating has occurred during the formation and evolution of the debris disk of HD 106797.
We study the dynamical origin of the structures observed in the scattered-light images of the resolved debris disk around HD 141569A. We explore the roles of radiation pressure from the central star, gas drag from the gas disk, and the tidal forces f rom two nearby stars in creating and maintaining these structures. We use a simple one-dimensional axisymmetric model to show that the presence of the gas helps confine the dust and that a broad ring of dust is produced if a central hole exists in the disk. This model also suggests that the disk is in a transient, excited dynamical state, as the observed dust creation rate applied over the age of the star is inconsistent with submillimeter mass measurements. We model in two dimensions the effects of a fly-by encounter between the disk and a binary star in a prograde, parabolic, coplanar orbit. We track the spatial distribution of the disks gas, planetesimals, and dust. We conclude that the surface density distribution reflects the planetesimal distribution for a wide range of parameters. Our most viable model features a disk of initial radius 400 AU, a gas mass of 50 M_earth, and beta = 4 and suggests that the system is being observed within 4000 yr of the fly-by periastron. The model reproduces some features of HD 141569As disk, such as a broad single ring and large spiral arms, but it does not reproduce the observed multiple spiral rings or disk asymmetries nor the observed clearing in the inner disk. For the latter, we consider the effect of a 5 M_Jup planet in an eccentric orbit on the planetesimal distribution of HD 141569A.
We present imaging observations at 1.3 millimeters of the debris disk surrounding the nearby M-type flare star AU Mic with beam size 3 arcsec (30 AU) from the Submillimeter Array. These data reveal a belt of thermal dust emission surrounding the star with the same edge-on geometry as the more extended scattered light disk detected at optical wavelengths. Simple modeling indicates a central radius of ~35 AU for the emission belt. This location is consistent with the reservoir of planetesimals previously invoked to explain the shape of the scattered light surface brightness profile through size-dependent dust dynamics. The identification of this belt further strengthens the kinship between the debris disks around AU Mic and its more massive sister star beta Pic, members of the same ~10 Myr-old moving group.
HST/NICMOS PSF-subtracted coronagraphic observations of HD 181327 have revealed the presence of a ring-like disk of circumstellar debris seen in 1.1 micron light scattered by the disk grains, surrounded by a di use outer region of lower surface brigh tness. The annular disk appears to be inclined by 31.7 +/- 1.6 deg from face on with the disk major axis PA at 107 +/-2 deg . The total 1.1 micron flux density of the light scattered by the disk (at 1.2 < r < 5.0) of 9.6 mJy +/- 0.8 mJy is 0.17% +/- 0.015% of the starlight. Seventy percent of the light from the scattering grains appears to be confined in a 36 AU wide annulus centered on the peak of the radial surface brightness (SB) profile 86.3 +/- 3.9 AU from the star, well beyond the characteristic radius of thermal emission estimated from IRAS and Spitzer flux densities assuming blackbody grains (~ 22 AU). The light scattered by the ring appears bilaterally symmetric, exhibits directionally preferential scattering well represented by a Henyey-Greenstein scattering phase function with g = 0.30 +/- 0.03, and has an azimuthally medianed SB at the 86.3 AU radius of peak SB of 1.00 +/- 0.07 mJy arcsec^-2. No photocentric offset is seen in the ring relative to the position of the central star. A low surface brightness diffuse halo is seen in the NICMOS image to a distance of ~ 4 Deeper 0.6 micron HST/ACS PSF-subtracted coronagraphic observations reveal a faint outer nebulosity, asymmetrically brighter to the North of the star. We discuss models of the disk and properties of its grains, from which we infer a maximum vertical scale height of 4 - 8 AU at the 87.6 AU radius of maximum surface density, and a total maximum dust mass of collisionally replenished grains with minimum grain sizes of ~ 1 micron of ~ 4 M(moon).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا