ﻻ يوجد ملخص باللغة العربية
We report experimental observation of the refraction and re ection of propagating magnetostatic spin waves crossing a 90-degree domain wall (DW) in terms of time-resolved magneto-optical imaging. Due to the magnetization rotation across the 90-degree DW, the dispersion relation of magnetostatic spin waves rotates by 90 degrees, which results in the change in the propagation dynamics of spin waves in both sides of the DW. We observe the refraction and re ection of magnetosatatc spin waves at the 90-degree DW, and reveal their characteristics, such as negative refraction. The incident-angle dependence of the refraction angle is explained by the wavenumber conservation along the DW, same as the case of Snells law for light.
Snells law, which encompasses both refraction and total internal reflection (TIR), provides the foundation for ray optics and all lens-based instruments, from microscopes to telescopes. Refraction results when light crosses the interface between medi
Polarization, denoting the precession direction with respect to the background magnetization, is an intrinsic degree of freedom of spin wave. Using magnetic textures to control the spin wave polarization is fundamental and indispensable toward reprog
A quantum vortex dipole, comprised of a closely bound pair of vortices of equal strength with opposite circulation, is a spatially localized travelling excitation of a planar superfluid that carries linear momentum, suggesting a possible analogy with
We present experiments on slow shear flow in a split-bottom linear shear cell, filled with layered granular materials. Shearing through two different materials separated by a flat material boundary is shown to give narrow shear zones, which refract a
We demonstrate current-induced displacement of ferromagnetic domain walls in sub-micrometer fabricated patterns of SrRuO3 films. The displacement, monitored by measuring the extraordinary Hall effect, is induced at zero applied magnetic field and its