ﻻ يوجد ملخص باللغة العربية
Chern insulator or quantum anomalous Hall state is a topological state with integer Hall conductivity but in absence of Landau level. It had been well established on various two-dimensional lattices with periodic structure. Here, we report similar Chern insulators can also be realized on the quasicrystal with $5$-fold rotational symmetry. Providing the staggered flux through plaquettes, we propose two types of quasicrystalline Chern insulators. Their topological characterizations are well identified by the robustness of edge states, non-zero real-space Chern number, and quantized conductance. We further find the failure of integer conductivity but with quantized Chern number at some special energies. Our study therefore provide a new opportunity to searching topological materials in aperiodic system.
Controlling light propagation using artificial photonic crystals and electromagnetic metamaterials is an important topic in the vibrant field of photonics. Notably, chiral edge states on the surface or at the interface of photonic Chern insulators ca
Within a relativistic quantum formalism we examine the role of second-order corrections caused by the application of magnetic fields in two-dimensional topological and Chern insulators. This allows to reach analytical expressions for the change of th
Robustness against disorder and defects is a pivotal advantage of topological systems, manifested by absence of electronic backscattering in the quantum Hall and spin-Hall effects, and unidirectional waveguiding in their classical analogs. Two-dimens
The quantum anomalous Hall (QAH) state is a two-dimensional topological insulating state that has quantized Hall resistance of h/Ce2 and vanishing longitudinal resistance under zero magnetic field, where C is called the Chern number. The QAH effect h
We study the construction of programable integrated circuits with the help of disordered Chern insulators (CIs) in this letter. Specifically, the schemes for low dissipation logic devices and connecting wires are proposed. We use the external-gate-in