ﻻ يوجد ملخص باللغة العربية
Using a careful choice of infrared (IR) subtraction scheme, we demonstrate the cancellation of all terms with transcendental weights 0,1,2 from the finite part of the full-color two-loop four-gluon $mathcal{N}=2$ supersymmetric QCD amplitude, with $N_f$ massless supersymmetric quarks. This generalizes the previously observed cancellation of weight-2 terms in the superconformal theory, where $N_f=2N_c$ for gauge group SU$(N_c)$. The subtraction scheme follows naturally both from general IR factorization principles and from an integrand-level analysis of divergences in this amplitude. The divergences are written in terms of scalar triangle integrals whose expressions are known to all orders in the dimensional regulator $epsilon=(4-D)/2$. We also present integrated expressions for the full-color two-loop four-point amplitudes with both matter and vectors on external legs in which lower-weight terms also cancel using an appropriate IR scheme. This provides us with values for the two-loop cusp, gluonic, and quark anomalous dimensions in $mathcal{N}=2$ supersymmetric QCD, which are cross-checked between the three different amplitudes.
Using the duality between color and kinematics, we construct two-loop four-point scattering amplitudes in $mathcal{N}=2$ super-Yang-Mills (SYM) theory coupled to $N_f$ fundamental hypermultiplets. Our results are valid in $Dle 6$ dimensions, where th
Using the Gelfand-Kapranov-Zelevinsku{i} system for the primitive cohomology of an infinite series of complete intersection Calabi-Yau manifolds, whose dimension is the loop order minus one, we completely clarify the analytic structure of all banana
In this talk we review the recent computation of the five- and six-gluon two-loop amplitudes in Yang-Mills theory using local integrands which make the infrared pole structure manifest. We make some remarks on the connection with BCJ relations and the all-multiplicity structure.
The infrared structure of (multi-loop) scattering amplitudes is determined entirely by the identities of the external particles participating in the scattering. The two-loop infrared structure of pure qcd amplitudes has been known for some time. By c
We study the self energies of all particles which appear in a lattice regularization of supersymmetric QCD (${cal N}=1$). We compute, perturbatively to one-loop, the relevant two-point Greens functions using both the dimensional and the lattice regul