ﻻ يوجد ملخص باللغة العربية
We present an open source kinematic fitting routine designed for low-energy nuclear physics applications. Although kinematic fitting is commonly used in high-energy particle physics, it is rarely used in low-energy nuclear physics, despite its effectiveness. A FORTRAN and ROOT C++ version of the FUNKI_FIT kinematic fitting code have been developed and published open access. The FUNKI_FIT code is universal in the sense that the constraint equations can be easily modified to suit different experimental set-ups and reactions. Two case studies for the use of this code, utilising experimental and Monte-Carlo data, are presented: (1) charged-particle spectroscopy using silicon-strip detectors; (2) charged-particle spectroscopy using active target detectors. The kinematic fitting routine provides an improvement in resolution in both cases, demonstrating, for the first time, the applicability of kinematic fitting across a range of nuclear physics applications. The ROOT macro has been developed in order to easily apply this technique in standard data analysis routines used by the nuclear physics community.
Progress in nuclear physics is driven by the experimental observation that requires state of the art detectors to measure various kinematic properties, such as energy, momentum, position etc. of the particles produced in a nuclear reaction. Advances
Tracking capabilities in Time Projection Chambers (TPCs) are strongly dictated by the homogeneity of the drift field. Ion back-flow in various gas detectors, mainly induced by the secondary ionization processes during amplification, has long been kno
In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into
Production of a GeV photon beam by laser backward-Compton scattering has been playing an important role as a tool for nuclear and particle physics experiments. Its production techniques are now established at electron storage rings, which are increas
We present an alternative implementation of the Kalman filter employed for track fitting within the LHCb experiment. It uses simple parametrizations for the extrapolation of particle trajectories in the field of the LHCb dipole magnet and for the eff