ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical magnetic dipole levitation using a plasmonic surface

218   0   0.0 ( 0 )
 نشر من قبل Jack Kingsley-Smith
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optically-induced magnetic resonances in non-magnetic media have unlocked magnetic light-matter interactions and led to new technologies in many research fields. Previous proposals for the levitation of nanoscale particles without structured illumination have worked on the basis of epsilon-near-zero surfaces or anisotropic materials but these carry with them significant fabrication difficulties. We report the optical levitation of a magnetic dipole over a wide range of realistic materials, including bulk metals, thereby relieving these difficulties. The repulsion is independent of surface losses and we propose an experiment to detect this force which consists of a core-shell nanoparticle, exhibiting a magnetic resonance, in close proximity to a gold substrate under plane wave illumination. We anticipate the use of this phenomenon in new nanomechanical devices.



قيم البحث

اقرأ أيضاً

The ability to create dynamic, tailored optical potentials has become important across fields ranging from biology to quantum science. We demonstrate a method for the creation of arbitrary optical tweezer potentials using the broadband spectral profi le of a superluminescent diode combined with the chromatic aberration of a lens. A tunable filter, typically used for ultra-fast laser pulse shaping, allows us to manipulate the broad spectral profile and therefore the optical tweezer potentials formed by focusing of this light. We characterize these potentials by measuring the Brownian motion of levitated nanoparticles in vacuum and, also demonstrate interferometric detection and feedback cooling of the particle,s motion. This simple and cost-effective technique will enable a wide range of applications and allow rapid modulation of the optical potential landscape in excess of MHz frequencies.
Chiral nanophotonic devices are promising candidates for chiral molecules sensing, polarization diverse nanophotonics and display technologies. Active chiral nanophotonic devices, where the optical chirality can be controlled by an external stimulus has triggered great research interest. However, efficient modulation of the optical chirality has been challenging. Here, we demonstrate switching of the extrinsic chirality by applied magnetic fields in a magneto-plasmonic metasurface device based on a magneto-optical oxide material, Ce1Y2Fe5O12 (Ce:YIG). Thanks to the low optical loss and strong magneto-optical effect of Ce:YIG, we experimentally demonstrated a giant and continuous far-field circular dichroism (CD) modulation by applied magnetic fields from -0.65{deg} to +1.9{deg} at 950 nm wavelength under glancing incident conditions. The far field CD modulation is due to both magneto-optical circular dichroism and near-field modulation of the superchiral fields by applied magnetic fields. Finally, we demonstrate magnetic field tunable chiral imaging in millimeter-scale magneto-plasmonic metasurfaces fabricated using self-assembly. Our results provide a new way for achieving planar integrated, large-scale and active chiral metasurfaces for polarization diverse nanophotonics.
163 - Yosuke Minowa , Ryoichi Kawai , 2014
We demonstrate the optical levitation or trapping in helium gas of a single quantum dot (QD) within a liquid droplet. Bright single photon emission from the levitated QD in the droplet was observed for more than 200 s. The observed photon count rates are consistent with the value theoretically estimated from the two-photon-action cross section. This paper presents the realization of an optically levitated solid-state quantum emitter. This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: https://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-40-6-906. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.
106 - Kunhong Shen , Yao Duan , Peng Ju 2021
Optical levitation of dielectric particles in vacuum is a powerful technique for precision measurements, testing fundamental physics, and quantum information science. Conventional optical tweezers require bulky optical components for trapping and det ection. Here we design and fabricate an ultrathin dielectric metalens with a high numerical aperture of 0.88 at 1064 nm in vacuum. It consists of 500 nm-thick silicon nano-antennas, which are compatible with ultrahigh vacuum. We demonstrate optical levitation of nanoparticles in vacuum with a single metalens. The trapping frequency can be tuned by changing the laser power and polarization. We also transfer a levitated nanoparticle between two separated optical tweezers. Optical levitation with an ultrathin metalens in vacuum provides opportunities for a wide range of applications including on-chip sensing. Such metalenses will also be useful for trapping ultacold atoms and molecules.
143 - S. Mashhadi , M. Durach , D. Keene 2018
The possibility to use surface plasmon polaritons for enhancement of weak magnetic dipole transitions is analyzed theoretically and demonstrated experimentally for simple flat geometry and sine-wave profile modulated plasmonic films. Spontaneous emis sion of Eu3+ in organic matrices deposited onto plasmonic surfaces demonstrates specific angular and polarization patterns at both electric and magnetic dipole transitions with a well-defined maximum at the plasmon decoupling conditions manifesting the character and magnitude of the effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا