ﻻ يوجد ملخص باللغة العربية
We present optical measurements of the transition metal dichalcogenide PdTe$_{2}$. The reflectivity displays an unusual temperature and energy dependence in the far-infrared, which we show can only be explained by a collapse of the scattering rate at low temperature, resulting from the vicinity of a van Hove singularity near the Fermi energy. An analysis of the optical conductivity suggests that below 150 K a reduction in the available phase space for scattering takes place, resulting in long-lived quasiparticle excitations. We suggest that this reduction in phase space provides experimental evidence for a van Hove singularity close to the Fermi level. Our data furthermore indicates a very weak electron-phonon coupling. Combined this suggests that the superconducting transition temperature is set by the density of states associated with the van Hove singularity.
A mechanism of self-organized one-dimensionality in correlated electron system coupled to optical phonon mode is proposed. It is found that a lattice vibration may compactify electron motion effectively to a one-dimensional space and trigger quantum
The electronic band structure of the 2D kagome net hosts two different types of van Hove singularities (vHs) arising from an intrinsic electron-hole asymmetry. The distinct sublattice flavors (pure and mixed, p-type and m-type) and pairing instabilit
In the context of the relaxation time approximation to Boltzmann transport theory, we examine the behavior of the Hall number, $n_H$, of a metal in the neighborhood of a Lifshitz transition from a closed Fermi surface to open sheets. We find a univer
A van Hove singularity (VHS) often significantly amplifies the electronic instability of a crystalline solid, including correlation-induced phenomena such as Hunds metallicity. We perform a systematic study on the interplay between Hunds coupling and
A topological Dirac semimetal is a novel state of quantum matter which has recently attracted much attention as an apparent 3D version of graphene. In this paper, we report critically important results on the electronic structure of the 3D Dirac semi