ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Sub-Meter Level Indoor Localization With a Single WiFi Access Point-Regression Versus Classification

84   0   0.0 ( 0 )
 نشر من قبل Chenlu Xiang
 تاريخ النشر 2019
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Precise indoor localization is an increasingly demanding requirement for various emerging applications, like Virtual/Augmented reality and personalized advertising. Current indoor environments are equipped with pluralities of WiFi access points (APs), whose deployment is expected to be massive in the future enabling highly precise localization approaches. Though the conventional model-based localization schemes have achieved sub-meter level accuracy by fusing multiple channel state information (CSI) observations, the corresponding computational overhead is usually significant, especially in the current multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. In order to address this issue, model-free localization techniques using deep learning frameworks have been lately proposed, where mainly classification methods were applied. In this paper, instead of classification based mechanism, we propose a logistic regression based scheme with the deep learning framework, combined with Cramer-Rao lower bound (CRLB) assisted robust training, which achieves more robust sub-meter level accuracy (0.97m median distance error) in the standard laboratory environment and maintains reasonable online prediction overhead under the single WiFi AP settings.



قيم البحث

اقرأ أيضاً

Indoor localization becomes a raising demand in our daily lives. Due to the massive deployment in the indoor environment nowadays, WiFi systems have been applied to high accurate localization recently. Although the traditional model based localizatio n scheme can achieve sub-meter level accuracy by fusing multiple channel state information (CSI) observations, the corresponding computational overhead is significant. To address this issue, the model-free localization approach using deep learning framework has been proposed and the classification based technique is applied. In this paper, instead of using classification based mechanism, we propose to use a logistic regression based scheme under the deep learning framework, which is able to achieve sub-meter level accuracy (97.2cm medium distance error) in the standard laboratory environment and maintain reasonable online prediction overhead under the single WiFi AP settings. We hope the proposed logistic regression based scheme can shed some light on the model-free localization technique and pave the way for the practical deployment of deep learning based WiFi localization systems.
With the rapid development of indoor location-based services (LBSs), the demand for accurate localization keeps growing as well. To meet this demand, we propose an indoor localization algorithm based on graph convolutional network (GCN). We first mod el access points (APs) and the relationships between them as a graph, and utilize received signal strength indication (RSSI) to make up fingerprints. Then the graph and the fingerprint will be put into GCN for feature extraction, and get classification by multilayer perceptron (MLP).In the end, experiments are performed under a 2D scenario and 3D scenario with floor prediction. In the 2D scenario, the mean distance error of GCN-based method is 11m, which improves by 7m and 13m compare with DNN-based and CNN-based schemes respectively. In the 3D scenario, the accuracy of predicting buildings and floors are up to 99.73% and 93.43% respectively. Moreover, in the case of predicting floors and buildings correctly, the mean distance error is 13m, which outperforms DNN-based and CNN-based schemes, whose mean distance errors are 34m and 26m respectively.
With the unprecedented demand for location-based services in indoor scenarios, wireless indoor localization has become essential for mobile users. While GPS is not available at indoor spaces, WiFi RSS fingerprinting has become popular with its ubiqui tous accessibility. However, it is challenging to achieve robust and efficient indoor localization with two major challenges. First, the localization accuracy can be degraded by the random signal fluctuations, which would influence conventional localization algorithms that simply learn handcrafted features from raw fingerprint data. Second, mobile users are sensitive to the localization delay, but conventional indoor localization algorithms are computation-intensive and time-consuming. In this paper, we propose EdgeLoc, an edge-IoT framework for efficient and robust indoor localization using capsule networks. We develop a deep learning model with the CapsNet to efficiently extract hierarchical information from WiFi fingerprint data, thereby significantly improving the localization accuracy. Moreover, we implement an edge-computing prototype system to achieve a nearly real-time localization process, by enabling mobile users with the deep-learning model that has been well-trained by the edge server. We conduct a real-world field experimental study with over 33,600 data points and an extensive synthetic experiment with the open dataset, and the experimental results validate the effectiveness of EdgeLoc. The best trade-off of the EdgeLoc system achieves 98.5% localization accuracy within an average positioning time of only 2.31 ms in the field experiment.
Indoor localization has drawn much attention owing to its potential for supporting location based services. Among various indoor localization techniques, the received signal strength (RSS) based technique is widely researched. However, in conventiona l RSS based systems where the radio environment is unconfigurable, adjacent locations may have similar RSS values, which limits the localization precision. In this paper, we present MetaRadar, which explores reconfigurable radio reflection with a surface/plane made of metamaterial units for multi-user localization. By changing the reflectivity of metamaterial, MetaRadar modifies the radio channels at different locations, and improves localization accuracy by making RSS values at adjacent locations have significant differences. However, in MetaRadar, it is challenging to build radio maps for all the radio environments generated by metamaterial units and select suitable maps from all the possible maps to realize a high accuracy localization. To tackle this challenge, we propose a compressive construction technique which can predict all the possible radio maps, and propose a configuration optimization algorithm to select favorable metamaterial reflectivities and the corresponding radio maps. The experimental results show a significant improvement from a decimeter-level localization error in the traditional RSS-based systems to a centimeter-level one in MetaRadar.
We study the problem of indoor localization using commodity WiFi channel state information (CSI) measurements. The accuracy of methods developed to address this problem is limited by the overall bandwidth used by the WiFi device as well as various ty pes of signal distortions imposed by the underlying hardware. In this paper, we propose a localization method that performs channel impulse response (CIR) estimation by splicing measured CSI over multiple WiFi bands. In order to overcome hardware-induced phase distortions, we propose a phase retrieval (PR) scheme that only uses CSI magnitude values to estimate the CIR. To achieve high localization accuracy, the PR scheme involves a sparse recovery step, which exploits the fact that the CIR is sparse over the delay domain, due to the small number of contributing signal paths in an indoor environment. Simulation results indicate that our approach outperforms the state of the art by an order of magnitude (cm-level localization accuracy) for more than 90% of the trials and for various SNR regimes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا