ﻻ يوجد ملخص باللغة العربية
We study the electronic structure of heterostructures formed by a graphene nanoribbon (GNR) and a transition metal dichalcogenides (TMD) monolayer using first-principles. We consider both semiconducting TMDs and metallic TMDs, and different stacking configurations. We find that when the TMD is semiconducting the effects on the band structure of the GNRs are small. In particular the spin-splitting induced by proximity on the GNRs bands is only of the order of few meV irrespective of the stacking configuration. When the TMD is metallic, such as NbSe2, we find that the spin-splitting induced in the GNRs can be very large and strongly dependent on the stacking configuration. For optimal stacking configurations the proximity-induced spin-splitting is of the order of 20 meV for armchair graphene nanoribbons, and as high as 40 meV for zigzag graphene nanoribbons. This results are encouraging for the prospects of using GNR-TMD heterostructures to realize quasi one-dimensional topological superconducting states supporting Majorana modes.
We report a systematic study on strong enhancement of spin-orbit interaction (SOI) in graphene driven by transition-metal dichalcogenides (TMDs). Low temperature magnetotoransport measurements of graphene proximitized to different TMDs (monolayer and
In transition-metal dichalcogenides, electrons in the K-valleys can experience both Ising and Rashba spin-orbit couplings. In this work, we show that the coexistence of Ising and Rashba spin-orbit couplings leads to a special type of valley Hall effe
In this paper we develop the excitonic theory of Kerr rotation angle in a two-dimensional (2D) transition metal dichalcogenide at zero magnetic field. The finite Kerr angle is induced by the interplay between spin-orbit splitting and proximity exchan
Recently, signatures of nonlinear Hall effects induced by Berry-curvature dipoles have been found in atomically thin 1T/Td-WTe$_2$. In this work, we show that in strained polar transition-metal dichalcogenides(TMDs) with 2H-structures, Berry-curvatur
We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene syste