ﻻ يوجد ملخص باللغة العربية
In this paper, we explore the task of robot sculpting. We propose a search based planning algorithm to solve the problem of sculpting by material removal with a multi-axis manipulator. We generate collision free trajectories for a manipulator using best-first search in voxel space. We also show significant speedup of our algorithm by using octrees to decompose the voxel space. We demonstrate our algorithm on a multi-axis manipulator in simulation by sculpting Michelangelos Statue of David, evaluate certain metrics of our algorithm and discuss future goals for the project.
Robotic fiber positioner (RFP) arrays are becoming heavily adopted in wide field massively multiplexed spectroscopic survey instruments. RFP arrays decrease nightly operational overheads through rapid reconfiguration between fields and exposures. In
Online generation of collision free trajectories is of prime importance for autonomous navigation. Dynamic environments, robot motion and sensing uncertainties adds further challenges to collision avoidance systems. This paper presents an approach fo
We present a neural network collision checking heuristic, ClearanceNet, and a planning algorithm, CN-RRT. ClearanceNet learns to predict separation distance (minimum distance between robot and workspace) with respect to a workspace. CN-RRT then effic
We present an integrated Task-Motion Planning (TMP) framework for navigation in large-scale environments. Of late, TMP for manipulation has attracted significant interest resulting in a proliferation of different approaches. In contrast, TMP for navi
We present an integrated Task-Motion Planning (TMP) framework for navigation in large-scale environment. Autonomous robots operating in real world complex scenarios require planning in the discrete (task) space and the continuous (motion) space. In k