ترغب بنشر مسار تعليمي؟ اضغط هنا

The NIKA polarimeter on science targets. Crab nebula observations at 150 GHz and dual-band polarization images of Orion Molecular Cloud OMC-1

62   0   0.0 ( 0 )
 نشر من قبل Alessia Ritacco
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present here the polarization system of the NIKA camera and give a summary of the main results obtained and performed studies on Orion and the Crab nebula. The polarization system was equipped with a room temperature continuously rotating multi-mesh half wave plate and a grid polarizer facing the NIKA cryostat window. NIKA even though less sensitive than NIKA2 had polarization capability in both 1 and 2 millimiter bands. NIKA polarization observations demonstrated the ability of such a technology in detecting the polarization of different targets, compact and extended sources like the Crab nebula and Orion Molecular Cloud region OMC-1. These measurements together with the developed techniques to deal with systematics, opened the way to the current observations of NIKA2 in polarization that will provide important advances in the studies of galactic and extra-galactic emission and magnetic fields.



قيم البحث

اقرأ أيضاً

The Crab nebula is a supernova remnant exhibiting a highly polarized synchrotron radiation at radio and millimeter wavelengths. It is the brightest source in the microwave sky with an extension of 7 by 5 arcminutes and commonly used as a standard can dle for any experiment which aims at measuring the polarization of the sky. Though its spectral energy distribution has been well characterized in total intensity, polarization data are still lacking at millimetre wavelengths. We report in this paper high resolution (18 arcsec FWHM) observations of the Crab nebula in total intensity and linear polarization at 150 GHz with the NIKA camera. NIKA, operated at the IRAM 30 m telescope from 2012 to 2015, is a camera made of Lumped Element Kinetic Inductance Detectors (LEKIDs) observing the sky at 150 and 260 GHz. From these observations we are able to reconstruct the spatial distribution of the polarization degree and angle of the Crab nebula, which is found to be compatible with previous observations at lower and higher frequencies. Averaging across the source and using other existing data sets we find that the Crab nebula polarization angle is consistent with being constant over a wide range of frequencies with a value of -87.7$^circ$ +- 0.3 in Galactic coordinates. We also present the first estimation of the Crab nebula spectral energy distribution polarized flux in a wide frequency range: 30-353 GHz. Assuming a single power law emission model we find that the polarization spectral index $beta_{pol}$ = - 0.347 +- 0.026 is compatible with the intensity spectral index $beta$ = - 0.323 +- 0.001.
We present the polarization images in the $J$, $H$, & $Ks$ bands of the Orion Molecular Cloud 1 South region. The polarization images clearly show at least six infrared reflection nebulae (IRNe) which are barely seen or invisible in the intensity ima ges. Our polarization vector images also identify the illuminating sources of the nebulae: IRN 1 & 2, IRN 3, 4, & 5, and IRN 6 are illuminated by three IR sources, Source 144-351, Source 145-356, and Source 136-355, respectively. Moreover, our polarization images suggest the candidate driving sources of the optical Herbig-Haro objects for the first time; HH529, a pair of HH202 and HH528 or HH 203/204, HH 530 and HH269 are originated from Source 144-351, Source 145-356, and Source 136-355, respectively.
We report on the development of a polarization-sensitive dichroic (150/220 GHz) detector array for the Cosmology Large Angular Scale Surveyor (CLASS) delivered to the telescope site in June 2019. In concert with existing 40 and 90 GHz telescopes, the 150/220 GHz telescope will make observations of the cosmic microwave background over large angular scales aimed at measuring the primordial B-mode signal, the optical depth to reionization, and other fundamental physics and cosmology. The 150/220 GHz focal plane array consists of three detector modules with 1020 transition edge sensor (TES) bolometers in total. Each dual-polarization pixel on the focal plane contains four bolometers to measure the two linear polarization states at 150 and 220 GHz. Light is coupled through a planar orthomode transducer (OMT) fed by a smooth-walled feedhorn array made from an aluminum-silicon alloy (CE7). In this work, we discuss the design, assembly, and in-lab characterization of the 150/220 GHz detector array. The detectors are photon-noise limited, and we estimate the total array noise-equivalent power (NEP) to be 2.5 and 4 aW$sqrt{mathrm{s}}$ for 150 and 220 GHz arrays, respectively.
We present polarization measurements of extragalactic radio sources observed during the Cosmic Microwave Background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources select ed at 20 GHz from the public, $>$40 mJy catalog of the Australia Telescope (AT20G) survey. There are $sim$480 such sources within QUIETs four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error on our polarized flux density measurements is 30--40 mJy per Stokes parameter. At S/N $> 3$ significance, we detect linear polarization for seven sources in Q-band and six in W-band; only $1.3 pm 1.1$ detections per frequency band are expected by chance. For sources without a detection of polarized emission, we find that half of the sources have polarization amplitudes below 90 mJy (Q-band) and 106 mJy (W-band), at 95% confidence. Finally, we compare our polarization measurements to intensity and polarization measurements of the same sources from the literature. For the four sources with WMAP and Planck intensity measurements $>1$ Jy, the polarization fraction are above 1% in both QUIET bands. At high significance, we compute polarization fractions as much as 10--20% for some sources, but the effects of source variability may cut that level in half for contemporaneous comparisons. Our results indicate that simple models---ones that scale a fixed polarization fraction with frequency---are inadequate to model the behavior of these sources and their contributions to polarization maps.
132 - J. Aumont , L. Conversi , C. Thum 2009
CMB experiments aiming at a precise measurement of the CMB polarization, such as the Planck satellite, need a strong polarized absolute calibrator on the sky to accurately set the detectors polarization angle and the cross-polarization leakage. As th e most intense polarized source in the microwave sky at angular scales of few arcminutes, the Crab nebula will be used for this purpose. Our goal was to measure the Crab nebula polarization characteristics at 90 GHz with unprecedented precision. The observations were carried out with the IRAM 30m telescope employing the correlation polarimeter XPOL and using two orthogonally polarized receivers. We processed the Stokes I, Q, and U maps from our observations in order to compute the polarization angle and linear polarization fraction. The first is almost constant in the region of maximum emission in polarization with a mean value of alpha_Sky=152.1+/-0.3 deg in equatorial coordinates, and the second is found to reach a maximum of Pi=30% for the most polarized pixels. We find that a CMB experiment having a 5 arcmin circular beam will see a mean polarization angle of alpha_Sky=149.9+/-0.2 deg and a mean polarization fraction of Pi=8.8+/-0.2%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا