ﻻ يوجد ملخص باللغة العربية
A quantitative understanding of the evaporative drying kinetics and nucleation rates of aqueous based aerosol droplets is important for a wide range of applications, from atmospheric aerosols to industrial processes such as spray drying. Here, we introduce a numerical model for interpreting measurements of the evaporation rate and phase change of drying free droplets made using a single particle approach. We explore the evaporation of aqueous sodium chloride and sodium nitrate solution droplets. Although the chloride salt is observed to reproducibly crystallise at all drying rates, the nitrate salt solution can lose virtually all of its water content without crystallising. The latter phenomenon has implications for our understanding of the competition between the drying rate and nucleation kinetics in these two systems. The nucleation model is used in combination with the measurements of crystallisation events to infer nucleation rates at varying equilibrium state points, showing that classical nucleation theory provides a good description of the crystallisation of the chloride salt but not the nitrate salt solution droplets. The reasons for this difference are considered.
Charged colloidal dispersions make up the basis of a broad range of industrial and commercial products, from paints to coatings and additives in cosmetics. During drying, an initially liquid dispersion of such particles is slowly concentrated into a
A widely spread method of crystal preparation is to precipitate it from a supersaturated solution. In such a process, control of solution concentration is of paramount importance. Nucleation process, polymorph selection, and crystal habits depend cru
In directionally-dried colloidal dispersions regular bands can appear behind the drying front, inclined at $pm45^circ$ to the drying line. Although these features have been noted to share visual similarities to shear bands in metal, no physical mecha
We study how the dynamics of a drying front propagating through a porous medium are affected by small-scale correlations in material properties. For this, we first present drying experiments in micro-fluidic micro-models of porous media. Here, the fl
Shining a tightly-focused but low-powered laser beam on an absorber dispersed in a biological fluid gives rise to spectacular growth of dendritic patterns. These result from localized drying of the fluid because of efficient absorption and conduction