ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolving LMXBs: CARB Magnetic Braking

53   0   0.0 ( 0 )
 نشر من قبل Kenny Van
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The formation of low-mass X-ray binaries (LMXBs) is an ongoing challenge in stellar evolution. The important subset of LMXBs are the binary systems with a neutron star (NS) accretor. In NS LMXBs with non-degenerate donors, the mass transfer is mainly driven by magnetic braking. The discrepancies between the observed mass transfer (MT) rates and the theoretical models were known for a while. Theory predictions of the MT rates are too weak and differ by an order of magnitude or more. Recently, we showed that with the standard magnetic braking, it is not possible to find progenitor binary systems such that they could reproduce -- at any time of their evolution -- most of the observed persistent NS LMXBs. In this ${it Letter}$ we present a modified magnetic braking prescription, CARB (Convection And Rotation Boosted). CARB magnetic braking combines two recent improvements in understanding stellar magnetic fields and magnetized winds -- the dependence of the magnetic field strength on the outer convective zone and the dependence of the Alfv`en radius on the donors rotation. Using this new magnetic braking prescription, we can reproduce the observed mass transfer rates at the detected mass ratio and orbital period for all well-observed to-the-date Galactic persistent NS LMXBs. For the systems where the effective temperature of the donor stars is known, theory agrees with observations as well.



قيم البحث

اقرأ أيضاً

Angular momentum loss in ultracompact binaries, such as the AM Canum Venaticorum stars, is usually assumed to be due entirely to gravitational radiation. Motivated by the outflows observed in ultracompact binaries, we investigate whether magnetically coupled winds could in fact lead to substantial additional angular momentum losses. We remark that the scaling relations often invoked for the relative importance of gravitational and magnetic braking do not apply, and instead use simple non-empirical expressions for the braking rates. In order to remove significant angular momentum, the wind must be tied to field lines anchored in one of the binarys component stars; uncertainties remain as to the driving mechanism for such a wind. In the case of white dwarf accretors, we find that magnetic braking can potentially remove angular momentum on comparable or even shorter timescales than gravitational waves over a large range in orbital period. We present such a solution for the 17-minute binary AM CVn itself which admits a cold white dwarf donor and requires that the accretor have surface field strength ~6E4 G. Such a field would not substantially disturb the accretion disk. Although the treatment in this paper is necessarily simplified, and many conditions must be met in order for a wind to operate as proposed, it is clear that magnetic braking cannot easily be ruled out as an important angular momentum sink. We finish by highlighting observational tests that in the next few years will allow an assessment of the importance of magnetic braking.
Studies using asteroseismic ages and rotation rates from star-spot rotation have indicated that standard age-rotation relations may break down roughly half-way through the main sequence lifetime, a phenomenon referred to as weakened magnetic braking. While rotation rates from spots can be difficult to determine for older, less active stars, rotational splitting of asteroseismic oscillation frequencies can provide rotation rates for both active and quiescent stars, and so can confirm whether this effect really takes place on the main sequence. We obtained asteroseismic rotation rates of 91 main sequence stars showing high signal-to-noise modes of oscillation. Using these new rotation rates, along with effective temperatures, metallicities and seismic masses and ages, we built a hierarchical Bayesian mixture model to determine whether the ensemble more closely agreed with a standard rotational evolution scenario, or one where weakened magnetic braking takes place. The weakened magnetic braking scenario was found to be 98.4% more likely for our stellar ensemble, adding to the growing body of evidence for this stage of stellar rotational evolution. This work represents the largest catalogue of seismic rotation on the main sequence to date, opening up possibilities for more detailed ensemble analysis of rotational evolution with Kepler.
129 - K. Pavlovskii , N. Ivanova 2015
Sco X-1 is a low-mass X-ray binary (LMXB) that has one of the most precisely determined set of binary parameters such as the mass accretion rate, companions mass ratio and the orbital period. For this system, as well as for a large fraction of other well-studied LMXBs, the observationally-inferred mass accretion rate is known to strongly exceed the theoretically expected mass transfer rate. We suggest that this discrepancy can be solved by applying a modified magnetic braking prescription, which accounts for increased wind mass loss in evolved stars compared to main sequence stars. Using our mass transfer framework based on {tt MESA}, we explore a large range of binaries at the onset of the mass transfer. We identify the subset of binaries for which the mass transfer tracks cross the Sco X-1 values for the mass ratio and the orbital period. We confirm that no solution can be found for which the standard magnetic braking can provide the observed accretion rates, while wind-boosted magnetic braking can provide the observed accretion rates for many progenitor binaries that evolve to the observed orbital period and mass ratio.
Stars form in dense cores of molecular clouds that are observed to be significantly magnetized. In the simplest case of a laminar (non-turbulent) core with the magnetic field aligned with the rotation axis, both analytic considerations and numerical simulations have shown that the formation of a large, $10^2au$-scale, rotationally supported protostellar disk is suppressed by magnetic braking in the ideal MHD limit for a realistic level of core magnetization. This theoretical difficulty in forming protostellar disks is termed magnetic braking catastrophe. A possible resolution to this problem, proposed by citeauthor{HennebelleCiardi2009} and citeauthor{Joos+2012}, is that misalignment between the magnetic field and rotation axis may weaken the magnetic braking enough to enable disk formation. We evaluate this possibility quantitatively through numerical simulations. We confirm the basic result of citeauthor{Joos+2012} that the misalignment is indeed conducive to disk formation. In relatively weakly magnetized cores with dimensionless mass-to-flux ratio $gtrsim 5$, it enabled the formation of rotationally supported disks that would otherwise be suppressed if the magnetic field and rotation axis are aligned. For more strongly magnetized cores, disk formation remains suppressed, however, even for the maximum tilt angle of $90degree$. If dense cores are as strongly magnetized as indicated by OH Zeeman observations (with a mean dimensionless mass-to-flux ratio $sim 2$), it would be difficult for the misalignment alone to enable disk formation in the majority of them. We conclude that, while beneficial to disk formation, especially for the relatively weak field case, the misalignment does not completely solve the problem of catastrophic magnetic braking in general.
129 - Bo Zhao 2012
The majority of stars reside in multiple systems, especially binaries. The formation and early evolution of binaries is a longstanding problem in star formation that is not fully understood. In particular, how the magnetic field observed in star-form ing cores shapes the binary characteristics remains relatively unexplored. We demonstrate numerically, using the ENZO-MHD code, that a magnetic field of the observed strength can drastically change two of the basic quantities of a binary system: the orbital separation and mass ratio of the two components. Our calculations focus on the protostellar mass accretion phase, after a pair of stellar seeds have already formed. We find that, in dense cores magnetized to a realistic level, the angular momentum of the gas accreted by the protobinary is greatly reduced by magnetic braking. Accretion of strongly braked material shrinks the protobinary separation by a large factor compared to the non-magnetic case. The magnetic braking also changes the evolution of the mass ratio of unequal-mass protobinaries by producing gas of low specific angular momentum that accretes preferentially onto the primary rather than the secondary. This is in contrast with the preferential mass accretion onto the secondary previously found for protobinaries accreting from an unmagnetized envelope, which tends to drive the mass ratio towards unity. In addition, the magnetic field greatly modifies the morphology and dynamics of the protobinary accretion flow. It suppresses the circumstellar and circumbinary disks that feed the protobinary in the non-magnetic case; the binary is fed instead by a fast collapsing pseudodisk whose rotation is strongly braked. The magnetic braking-driven inward migration of binaries from their birth locations may be constrained by high-resolution observations of the orbital distribution of deeply embedded protobinaries, especially with ALMA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا